Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB
b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2
=>góc MOA=60 độ
sđ cung AB=2*60=120 độ
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=MH*MO
1: Xét tứ giác AMBO có
\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
=>AMBO là tứ giác nội tiếp đường tròn đường kính OM
2: ΔONP cân tại O
mà OK là trung tuyến
nên OK vuông góc NP
\(\widehat{OKM}=\widehat{OAM}=\widehat{OBM}=90^0\)
=>O,K,A,M,B cùng thuộc 1 đường tròn
a: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b; Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB
Khi cát tuyến MCD không đi qua O.
IC = ID (gt)
OI ⊥ CD (đường kính đi qua điểm chính giữa của dây không đi qua tâm)
A, I, B nhìn MO dưới một góc bằng 90º nên A, I, B nằm trên đường tròn đường kính MO.
Vậy: Ngũ giác MAOIB nội tiếp.
(Khi cát tuyến MCD đi qua O ngũ giác MAOIB suy biến thành tứ giác MAOB chứng minh tương tự).
a: ΔOCD cân tại O có OK là đường trung tuyến
nên OK vuông góc CD
góc OKM=góc OAM=góc OBM=90 độ
=>O,K,M,A,B cùng thuộc đường tròn đường kính OM
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA=1/2sđ cung AC
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
=>MD*MC ko phụ thuộc vào cát tuyến MCD
A, B, I nhìn MO cố định dưới một góc bằng 90° nên A, B, I nằm trên đường tròn bán kính MO.
B và C cùng nằm trên một nửa mặt phẳng bờ chứa đường HI tạo với HI một góc bằng nhau nên tứ giác BCHI nội tiếp.
b: Xét tứ giác MAIO có
\(\widehat{OIM}=\widehat{OAM}=90^0\)
Do đó: MAIO là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
Tự mà làm
Cho đường tròn ( O: R) và đường thẳng d không có điểm chung với đường tròn.Trên d lấy một điểm M bất kì, qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm).Kẻ cát tuyến MDE (D nằm giữa M và E, cắt bán kính OA). Gọi I là trung điểm DE...