K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4

Tự mà làm 

5 tháng 4

Cho đường tròn ( O: R) và đường thẳng d không có điểm chung với đường tròn.Trên d lấy một điểm M bất kì, qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm).Kẻ cát tuyến MDE (D nằm giữa M và E, cắt bán kính OA). Gọi I là trung điểm DE...

a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB

b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2

=>góc MOA=60 độ

sđ cung AB=2*60=120 độ

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=MH*MO

 

12 tháng 3 2023

Giúp mình giải câu e với ạ

22 tháng 10 2023

1: Xét tứ giác AMBO có

\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)

=>AMBO là tứ giác nội tiếp đường tròn đường kính OM

2: ΔONP cân tại O

mà OK là trung tuyến

nên OK vuông góc NP

\(\widehat{OKM}=\widehat{OAM}=\widehat{OBM}=90^0\)

=>O,K,A,M,B cùng thuộc 1 đường tròn

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b; Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

6 tháng 12 2023

bạn ơi cho mình xin hình vẽ được không

 

3 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Khi cát tuyến MCD không đi qua O.

IC = ID (gt)

OI ⊥ CD (đường kính đi qua điểm chính giữa của dây không đi qua tâm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

A, I, B nhìn MO dưới một góc bằng 90º nên A, I, B nằm trên đường tròn đường kính MO.

Vậy: Ngũ giác MAOIB nội tiếp.

(Khi cát tuyến MCD đi qua O ngũ giác MAOIB suy biến thành tứ giác MAOB chứng minh tương tự).

a: ΔOCD cân tại O có OK là đường trung tuyến

nên OK vuông góc CD

góc OKM=góc OAM=góc OBM=90 độ

=>O,K,M,A,B cùng thuộc đường tròn đường kính OM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA=1/2sđ cung AC

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA

=>MA^2=MD*MC

=>MD*MC ko phụ thuộc vào cát tuyến MCD

 

18 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

A, B, I nhìn MO cố định dưới một góc bằng 90° nên A, B, I nằm trên đường tròn bán kính MO.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

B và C cùng nằm trên một nửa mặt phẳng bờ chứa đường HI tạo với HI một góc bằng nhau nên tứ giác BCHI nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b: Xét tứ giác MAIO có 

\(\widehat{OIM}=\widehat{OAM}=90^0\)

Do đó: MAIO là tứ giác nội tiếp

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)