K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

b: Xét ΔMOA vuông tại A có \(sinMOA=\dfrac{MA}{MO}=\dfrac{\sqrt{3}}{2}\)

nên \(\widehat{MOA}=60^0\)

=>\(\widehat{AON}=60^0\)

=>\(\widehat{\left(ON;OA\right)}=60^0\)

c: Xét (O) có

\(\widehat{AON}\) là góc ở tâm chắn cung AN nhỏ

Do đó: \(sđ\stackrel\frown{AN}_{nhỏ}=\widehat{AON}=60^0\)

Số đo cung lớn AN là:

\(360-60=300^0\)

a) Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\cdot\dfrac{OA}{OA}=\sqrt{3}\)

hay \(\widehat{AOM}=60^0\)

\(\Leftrightarrow\widehat{AON}=60^0\)

Vậy: Số đo góc ở tâm tạo bởi 2 bán kính OA và ON là 600

b) Xét (O) có

\(\stackrel\frown{AN}\) là cung chắn góc ở tâm \(\widehat{AON}\)(gt)

nên \(sđ\stackrel\frown{AN}=60^0\)

Số đo cung lớn AN là: 

\(360^0-60^0=300^0\)

a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)

=>\(\widehat{AOC}=45^0\)

=>\(sđ\left(OA;OC\right)=45^0\)

b: Số đo cung AC nhỏ là:

\(sđ\stackrel\frown{AC}=45^0\)

Số đo cung AC lớn là:

3600-450=3150

góc AOB=90-36=54 độ

=>sđ cung AB nhỏ=54 độ

sđ cung AB lớn=360-54=306 độ

a: Xét ΔAOM vuông tại A có tan AOM=AM/OA=căn 3

nên góc AOM=60 độ

=>sđ cung nhỏ AI=60 độ

=>sđ cung lớn AI=300 độ

b: Xét (O) có

MA,MC là tiếp tuyến

nên MA=MC và OM là phân giác của góc COA(1)

Xét (O) có

NC,NB là tiếp tuyến

nên NC=NB và ON là phân giác của góc COB(2)

Từ (1), (2) suy ra góc MON=1/2*180=90 độ

Xét ΔMON vuông tại O có OC là đường cao

nên MC*CN=OC^2

=>AM*BN=R^2

c: góc IAC=90 độ-góc OIA

góc MAI=90 độ-góc OAI

mà góc OIA=góc OAI

nên góc IAC=góc IAM

=>AI là phân giác của góc MAC

mà MI là phân giác của góc AMC

nên I là tâm đường tròn nội tiếp ΔMAC

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại Na) Cho OM = 2R. Tính AON và số đo A NBb) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)cắt AB, AC tương ứng tại M và N.a) Chứng minh các cung nhỏ BM và CN có số...
Đọc tiếp

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,
MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại N
a) Cho OM = 2R. Tính AON và số đo A NB
b) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.
Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)
cắt AB, AC tương ứng tại M và N.
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính MON , nếu BAC =40o
Bài 9: Trên cung nhỏ AB của đường tròn (O), cho hai điểm C, D sao cho cung AB được
chia thành ba cung bằng nhau, tức là AC =CD =DB . Bán kính OC và OD cắt dây AB lần
lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE, EF và FB
b) Chứng minh rằng AB // CD
Cả hình giúp mình nhé! mơn trc nàhihi

1

Bài 7:

a: Xét ΔOAM vuông tại A có 

\(\cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AOM}=60^0\)

b: Xét tứ giác OAMB có 

\(\widehat{OAM}+\widehat{OBM}=180^0\)

Do đó: OAMB là tứ giác nội tiếp

Suy ra: \(\widehat{AOB}=180^0-36^0=144^0\)

17 tháng 10 2018

a, Sử dụng tỉ số lượng giác trong tam giác vuông ∆AMO ta tính được  A O M ^ = 60 0

b, Tính được  A O B ^ = 120 0 , sđ  A B C ⏜ = 120 0

c, Ta có  A O C ⏜ = B O C ⏜ => A C ⏜ = B C ⏜

3 tháng 3 2021
answer-reply-image Good luck~
8 tháng 10 2023

là \(\sqrt{2}\)R ko phải R\(\sqrt{2}\) hum