Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD vuông tại D và ΔACD vuông tại D có
AD chung
AB=AC
=>ΔABD=ΔACD
=>DB=DC
ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(1)
DB=DC
=>D nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,D thẳng hàng
.
Có: Góc EAC + Góc BAC + Góc MAB = Góc EAM = 180 độ ( Góc EAM là góc bẹt )
=> Góc EAC + 75 độ + Góc MAB = 180 độ
=> Góc EAC + Góc MAB = 105 độ
Xét tam giác AEC có: Góc E + Góc EAC + Góc ACE = 180 độ ( định lý )
Xét tam giác AMB có: Góc M + Góc MAB + Góc ABM = 180 độ ( định lý )
=> Góc E + Góc EAC + Góc ACE + Góc M + Góc MAB + Góc ABM = 180 độ + 180 độ = 360 độ
=> ( Góc E + Góc M ) + ( Góc EAC + Góc MAB ) + ( Góc ACE + Góc ABM ) = 360 độ
=> 90 độ + 90 độ + 105 độ + ( Góc ACE + Góc ABM ) = 360 độ
=> 285 độ + ( Góc ACE + Góc ABM ) = 360 độ
=> Góc ACE + Góc ABM = 360 độ - 285 độ
=> Góc ACE + Góc ABM = 75 độ
Vậy:...
b: Xét tứ giác ACED có
AD//CE
AD=CE
Do đó: ACED là hình bình hành
Suy ra: AC//ED
hay ED⊥AB
Đáp án:
Giải thích các bước giải:
a) tam giác ADC và tam giác ECD
AD=FC
chung cạnh CD
Góc D=góc C= 90 độ
suy ra tam giác ADC=tam giác ECD(c.g.c)
b) Ta có AD=CE
AD // CF ( cùng vuông góc BC)
suy ra ADEC là hình bình hành
suy ra DE // AC
mà AB vuông góc AC => DE vuông góc AB
c) Ta có ADEC là hình bình hành => góc DEC=góc DAC (1)
Ta có góc DAC+góc BAD= 90 độ
mà góc ABC+ góc BAD= 90 độ
=> góc DAC=ABC (2)
Từ (1) và (2) suy ra góc CED=góc ABC
cho mifh xin tích Ạ
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=15^2-9^2=144\)
=>\(AC=\sqrt{144}=12\left(cm\right)\)
b: Xét ΔCAB vuông tại A và ΔCDE vuông tại D có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)(hai góc đối đỉnh)
Do đó: ΔCAB=ΔCDE
=>CB=CE
=>C là trung điểm của BE
Xét ΔFBE có
FC là đường cao
FC là đường trung tuyến
Do đó: ΔFBE cân tại F