Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) G là trọng tâm của \(\Delta\)ABC nên M
là trung điểm của AC và BG = \(\dfrac{2}{3}BM\)
SGBC = \(\dfrac{2}{3}s_{MBC}\) (2 tam giác GBC , MBC chung đường cao vẽ từ C đến BM và BG =\(\dfrac{2}{3}BM\))
b) SMBC = \(\dfrac{1}{2}s_{ABC}\) ( 2 tam giác MBC , ABC chung đường cao vẽ từ B đến AC, MC = \(\dfrac{1}{2}AC\))
Mà SMBC =\(\dfrac{2}{3}S_{MBC}\) ( câu a ). Do đó SGBC =\(\dfrac{2}{3}.\dfrac{1}{2}S_{MBC}\) = \(\dfrac{1}{3}S_{ABC}\)
Tương tự có SGAB = \(\dfrac{1}{3}S_{ABC}\) , SGAB =\(\dfrac{1}{3}S_{ABC}\)
a: Kẻ đường cao CK
\(S_{CBG}=\dfrac{1}{2}\cdot CK\cdot BG\)
\(S_{MBC}=\dfrac{1}{2}\cdot CK\cdot BM\)
mà BG=2/3BM
nên \(S_{CGB}=\dfrac{2}{3}\cdot S_{BMC}\)
b: Vì G là trọng tâm của ΔBAC
nên \(S_{GBC}=S_{AGC}=S_{AGB}\)