Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu d mình k hiểu trung trực của bd và cd bạn ns rõ ra mình làm cho
A B C H D 8 10 1 2 1 2 1 2 1 2
a, Tính AC:
Lưu ý: Muốn dùng định lí Pitago thì phải chỉ ra một góc trong tam giác đó bằng 90o.
Ta có: \(\widehat{A}=90^o\) (ΔABC vuông tại A)
Áp dụng định lí Pitago vào ΔABC:
Ta có: AB2 + AC2 = BC2
=> AC2 = BC2 - AB2
=> AC2 = 102 - 82
=> AC2 = 36
=> AC2 = \(\sqrt{36}\left(cm\right)\)
=> AC = 6 (cm)
b)
- \(\Delta ABH=\Delta DBH\):
Xét ΔABH và ΔDBH có:
+ BH là cạnh chung.
+ \(\widehat{H_1}=\widehat{H_2}=90^o\) (do kẻ AH \(\perp\) BC)
+ DH = HA (gt)
=> ΔABH = ΔDBH (c-g-c)
- \(\Delta ABD\) cân:
Ta có: ΔABH = ΔDBH (vừa cm)
=> AB = BD (2 cạnh tương ứng)
=> ΔABD cân tại B.
c, ΔABC = ΔDBC:
Ta có: ΔABH = ΔDBH (câu b)
=> \(\widehat{B_1}=\widehat{B_2}\) (2 góc tương ứng)
=> AB = BD (2 cạnh tương ứng)
Xét ΔABC và ΔDBC có:
+ AB = BD (cmt)
+ \(\widehat{B_1}=\widehat{B_2}\) (cmt)
+ BC là cạnh chung.
=> ΔABC = ΔDBC (c-g-c)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Theo a) ta có \(\Delta ABH=\Delta CDH\)\(\Rightarrow\widehat{ABH=\widehat{HDC}}\)
Hay MBA=NDC (1)
Ta có : \(\Delta ABK=\Delta DCK\left(c.g.c\right)\)
\(\Rightarrow\hept{\begin{cases}AB=DC\\\widehat{BAM}=\widehat{NCD}\end{cases}}\)(2)
Từ (1) và (2) => \(\Delta ABM=\Delta CDN\left(g.c.g\right)\)
=> BM=DN . Mà BH=DH => MH=HN => tam giác cân
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Hình tự vẽ
a, Xét \(\Delta ABH\)và \(\Delta DBH\)
Có : HA=HD
BH là cạnh chung
\(\widehat{AHB}=\widehat{AHB}=90^0\)
=> \(\Delta ABH=\Delta DBH\left(c.g.c\right)\)
đnag nghĩ tiếp ...
Nhầm : \(\widehat{AHB}=\widehat{DHB}=90^0\)
b, Theo định lí 3 cạnh của tam giác có số đo là 1800
Như ta đã bt \(\widehat{DHB}=90^0\)
\(\Rightarrow\widehat{DHB}+\widehat{HDC}=180^0\)
\(\Rightarrow\widehat{HDC}=180^0-\widehat{DHB}\)
\(\Rightarrow\widehat{HDC}=180^0-90^0=90^0\)
Mà \(\widehat{DHB}+\widehat{HDC}=\widehat{BDC}\)
\(90^0+90^0=\widehat{BDC}\)
\(180^0=\widehat{BDC}\)
Vậy \(\widehat{BDC}=180^0\)
a, Xét \(\Delta ABH\)và \(\Delta ABD\)có :
\(AH=AD\left(gt\right)\)
\(\widehat{BAH}=\widehat{BAD}=90^o\)( vì \(\Delta ABC\)vuông tại A )
\(BA\)chung
Vậy \(\Delta ABH=\Delta ABD\left(c.g.c\right)\)
\(\Rightarrow BH=BD\)( hai cạnh tương ứng )
\(\Rightarrow\Delta DBH\)cân tại B
b,Ta có:
AC = 2AB ( gt )
2AD = 2CD = AC ( vì D là trung điểm của AC )
Suy ra AB = AD = CD = 2 cm.
Lại có :
2AD = CD hay 2 x 2 = AC
nên AC = 4 cm
Xét \(\Delta ABC\)có :
\(BC^2=AB^2+AC^2\)
hay \(BC^2=2^2+4^2\)
\(BC^2=4+16\)
\(BC^2=20\Rightarrow BC=\sqrt{20}\)( cm )
Vậy \(BC=\sqrt{20}cm\)
Mình làm đến đây thôi
a: AC=6cm
b: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
HA=HD
Do đó: ΔABH=ΔDBH
c: Xét ΔCAB và ΔCDB có
BA=BD
\(\widehat{ABC}=\widehat{DBC}\)
BC chung
Do đó:ΔCAB=ΔCDB
d: Vì M nằm trên đường trung trực của BD nên MB=MD(1)
Vì M nằm trên đường trung trực của CD nên MC=MD(2)
Từ (1) và (2) suy ra B,D,C nằm trên đường tròn tâm là M(3)
Ta có: ΔDBC vuông tại D
nên D,B,C nằm trên đường tròn đường kính BC(4)
Từ (3) và (4) suy ra M là trung điểm của BC