Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
\(\Leftrightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\text{Th}1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)
\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}=-4\)
\(\text{th}2:a+b+c+d\ne0\Rightarrow a=b=c=d\)
\(\Leftrightarrow M=1+1+1+1=4\)
Vậy....
p/s: đầu tiên nhớ ghi lại cái đề nha :))
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
\(M=1+1+1+1=4\)
a) đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=bk
c=dk
ta có \(\frac{2a}{+3b2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
từ (1) và(2) ta có\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b)
đặt\(\frac{a}{b}=\frac{c}{d}=k\)
ta có\(\frac{ab}{ad}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ (1) và(2) \(\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d^2\right)}\)
Lần sau viết rõ yêu cầu đề nhá!
CMR: \(\frac{a}{b+c+1}=\frac{b}{a+c+1}=\frac{c}{a+b+1}=a+b+c\)
Ta có: 3 số a , b , c.Theo tính chất tỉ dãy số bằng nhau ta có:
\(\frac{a}{b+c+1}=\frac{b}{a+c+1}=\frac{c}{a+b+1}=a+b+c=1\)
\(\Rightarrow a=b=c=1-3=\left(-2\right)\)
Dấu = xảy ra khi \(a=b=c=\left(-2\right)\)
Ps: Chả biết đúng hay không , nếu sai xin bạn đừng dis, hổm đến giờ mk bị nhiều cái dis lắm rồi!
Sửa đề:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b+c+1}=\dfrac{b}{a+c+1}=\dfrac{c}{a+b-2}=\dfrac{a+b+c}{b+c+1+a+c+1+a+b+-2}=\dfrac{a+b+c}{\left(b+c+a+c+a+b\right)+\left(1+1-2\right)}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Tương đương với:
\(\left\{{}\begin{matrix}\dfrac{a}{b+c+1}=\dfrac{1}{2}\\\dfrac{b}{a+c+1}=\dfrac{1}{2}\\\dfrac{c}{a+c-2}=\dfrac{1}{2}\\a+b+c=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c+1=2a\\a+c+1=2b\\a+c-2=2c\\a+b+c=\dfrac{1}{2}\end{matrix}\right.\)
\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow b+c=\dfrac{1}{2}-a\)
Nên \(\dfrac{1}{2}-a+1=2a\)(tự tìm a nhé dễ lắm)
\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow a+c=\dfrac{1}{2}-b\)
Nên \(\dfrac{1}{2}-b+1=2b\)(tự tính b)
\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow a+b=\dfrac{1}{2}-c\)
Nên\(\dfrac{1}{2}-c-2=2c\)(tự tính c)
Vậy...
https://olm.vn/hoi-dap/detail/221248297106.html
tham khảo nhé
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)
\(\rightarrow a+b=a+b+c\) \(\rightarrow c=0\)
\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)