K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Ta có: \(\widehat{ABC}=180^o-\left(70^o+50^o\right)=180^0-120^o=60^o\)

\(\Rightarrow\widehat{ACM}=\widehat{BCM}=30^o\)

\(\Rightarrow\widehat{BMN}=\widehat{BAC}+\widehat{MCA}=100^o\)

\(\Rightarrow\widehat{BMN}=180^o-\widehat{BMN}-\widehat{MBN}=40^o\)

\(\Rightarrow\widehat{BMN}=\widehat{MBN}\)

Kẻ \(MH\perp BC\)

\(\Rightarrow MK=\frac{1}{2}BN\)

\(\Delta MKB=\Delta BHM\left(ch-gn\right)\)( tự chứng minh )

\(\Rightarrow BK=MH\Rightarrow MC=BN\)hay \(BN=MC\)

Vậy BN = MC ( đpcm )

24 tháng 3 2018

sao 2 tam giác đó bằng nhau được ???

vẽ hình ra đi

13 tháng 8 2016

Theo hình thì thấy là BN < MC

10 tháng 4 2017

minh thay cau tra loi cua ban ay la dung

17 tháng 3 2018

Có ABC = 180 - 70 - 50 = 60\(^o\)

=> ACM = MCB  = 30\(^o\)

=> NMB = BAC + ACM = 100\(^o\)

=> MNB = 180 - NMB  - MBN = 40\(^o\)= MBN

Từ M kẻ MH vuông BC => MH = \(\frac{1}{2}\)MC\((\)do sin 30 = \(\frac{1}{2}\)\()\)

Từ M kẻ MK vuông BN = MK = \(\frac{1}{2}\)BN\((\)do\(\Delta MBN\)cân tại M\()\)

Xét \(\Delta MKB=\Delta BHM\)\((\)cạnh huyền - góc nhọn \()\)

=> BK = MH => MC = BN

19 tháng 10 2023

Giup e vói ❤

13 tháng 8 2016

\(\widehat{ABC}=180^0-70^0-50^0=60^0\)

\(\Rightarrow\widehat{ACM}=\widehat{MCB}=30^0\)

\(\Rightarrow\widehat{NMB}=\widehat{BAC}+\widehat{ACM}=100^0\)

\(\Rightarrow\widehat{MNB}=180^0-\widehat{NMB}-\widehat{MBN}=40^0=\widehat{MBN}\)

từ M kẻ MH  _|_ BC 

\(\Rightarrow MK=\frac{1}{2}BN\)  ( do sin \(30^0=\frac{1}{2}\) )

từ M kẻ MK_|_ BN

\(\Rightarrow MK=\frac{1}{2}BN\)  ( do tam giác MBN  cân tại M)

xét tam giác MKB và tam giác BHM ( cạnh huyền - góc nhọn)

=> BK=MH=>MC=BN(đpcm)

13 tháng 8 2016

Có : ACB = 180 - 70 - 50 = 60 (độ)

=> ACM = MCB = 30 (độ)

=> NMB = BAC + ACM = 100 (độ)

=> MNB = 180 - NMB - MBN = 40 độ = MBN

Từ M kẻ MH vuông BC => MH = 1/2 MC (do sin 30 = 1/2)

Từ M kẻ MK vuông BN = MK = 1/2 BN (do tam giác MBN cân tại M)

Xét tam giác MKB = tam giác BHM (cạnh huyền - góc nhọn)

=> BK = MH => MC = BN