K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

ta có: \(Q_{\left(x\right)}=3x-0,5x^6-4x^5-x^3+ax^6+bx^5+6x^4+c-5\)

\(Q_{\left(x\right)}=3x+\left(ax^6-0,5x^6\right)+\left(bx^5-4x^5\right)+6x^4-x^3+c-5\)

\(Q_{\left(x\right)}=3x+\left(a-0,5\right)x^6+\left(b-4\right)x^5+6x^4-x^3+c-5\)

mà Q (x) có bậc 5, hệ số cao nhất là 3

=> ( b-4 ) x ^5 có hệ là 3

=> b-4 =3

b= 7

mà  hệ số tự do là -2

=>  đơn thức c  có hệ số tự do là -2 ( không có hạng tử nào trong đa thức có hệ số tự do: -2 )

=> c= -2

mà Q (x) có bậc là 5

=> (a -0,5 ) x^ 6 = 0 ( vì nếu không bằng 0 thì đa thức Q (x) có bậc 6)

mà x là biến số

=> a- 0,5 = 0

a= 0,5

vậy a= 0,5 ; b= 7; c= -2

CHÚC BN HỌC TỐT!!

30 tháng 3 2018
- Bạn học tốt nhen <3
7 tháng 5 2017

Sắp xếp: -2x^3 - 7x^5 + 6x^2 - 4x + b + ax^5 = (-7x^5 + ax^5)  - 2x^3 + 6x^2 - 4x + b = x^5( -7 + a) - 2x^3 + 6x^2 - 4x + b

Do đa thức này có bậc 5 và hệ số cao nhất là -2 => -7+a= 2 => a= 5

Do đa thức này có hệ số tự do là 3 => b=3

Vậy.....

1 tháng 5 2016

P(x) = - 7x^5 + ax^5 - 2x^3 - 4x +b = x^5 (a - 7) - 2x^3 -4x +b

Để hệ số cao nhaat là -2 => a - 7 = -2 =>a = 5 

ĐỂ hệ số tự do là 3 => b = 3

Vậy a = 5 ; b = 3 

 MINH NHANH NHA MINH TU, HS NHA

1 tháng 5 2016

P(x) = - 7x^5 + ax^5 - 2x^3 - 4x +b = x^5 (a - 7) - 2x^3 -4x +b

Để hệ số cao nhaat là -2 => a - 7 = -2 =>a = 5 

ĐỂ hệ số tự do là 3 => b = 3

Vậy a = 5 ; b = 3 

 MINH NHANH NHA MINH TU, HS NHA

\(Q\left(x\right)=x^6\left(-0.6+a\right)+x^5\left(b-4\right)+6x^4-x^3+3x+c-5\)

Vì q(x) có bậc là 5, hệ số cao nhất là 3 và hệ số tự do là -2

nên \(\left\{{}\begin{matrix}a-0.6=0\\b-4=3\\c-5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0.6\\b=7\\c=3\end{matrix}\right.\)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

\(P\left(x\right)=ax^4+x^3\left(2-b\right)+3x^2-x+c+4\)

Vì P(x) là đa thức bậc 3, hệ số cao nhất là 4 và hệ số tự do là 10 nên ta có: 

\(\left\{{}\begin{matrix}a=0\\2-b=4\\c+4=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-2\\c=6\end{matrix}\right.\)