K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

ai giúp vs

28 tháng 8 2020

Với mọi \(0\le a,b,c,d\le1\) thì \(\left(abcd\right)^{\frac{1}{3}}\le\left(abcvd\right)^{\frac{1}{4}}\) hay \(\sqrt[3]{abcd}\le\sqrt[4]{abcd}\)

Tương tự thì \(\sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\le\sqrt[4]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\)

\(\Rightarrow P\le\sqrt[4]{abcd}+\sqrt[4]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\)

\(\le\frac{a+b+c+d}{4}+\frac{4-a-b-c-d}{4}=1\)

Đẳng thức xảy ra tại a=b=c=0 hoặc a=b=c=d=1

6 tháng 10 2019

\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)

Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

6 tháng 10 2019

Cach khac

Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)

Ta co:

\(a+b+c=abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(\Rightarrow xy+yz+zx=1\)

\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

Ta lai co:

\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)

Tuong tu:

\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)

\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

\(\Rightarrow a=b=c=\sqrt{3}\) 

Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)

14 tháng 3 2020

Bài 1 :

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=\left|x-1\right|=1-x\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=\left|y-1\right|=1-y\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=\left|z-1\right|=1-z\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

30 tháng 8 2016

cosi đi 

30 tháng 8 2016

trong quyển nâng cao phát triển toán 9 đó

rất bổ ích đấy mua về mà đọc