Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
a) \(A=\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)
\(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)
\(A=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}+\frac{1}{a+3}-\frac{1}{a+4}+\frac{1}{a+4}-\frac{1}{a+5}\)
\(A=\frac{1}{a}-\frac{1}{a+5}=\frac{a+5-a}{a\left(a+5\right)}=\frac{5}{a^2+5a}\)
b) Điều kiện: \(a\ne0;-1;-2;-3;-4;-5\)
\(A>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}-\frac{5}{6}>0\) \(\Leftrightarrow\frac{30-5a^2-25a}{30\left(a^2+5a\right)}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)
Kết luận: ....
ĐKXĐ: ...
a/ \(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)
\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+...+\frac{1}{a+4}-\frac{1}{a+5}\)
\(=\frac{1}{a}-\frac{1}{a+5}=\frac{5}{a\left(a+5\right)}\)
\(A>\frac{5}{6}\Rightarrow\frac{5}{a\left(a+5\right)}>\frac{5}{6}\)
\(\Leftrightarrow\frac{1}{a\left(a+5\right)}-\frac{1}{6}>0\Leftrightarrow\frac{6-a^2-5a}{a\left(a+5\right)}>0\)
\(\Leftrightarrow\frac{\left(1-a\right)\left(a+6\right)}{a\left(a+5\right)}>0\Rightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)
Bài làm
\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
\(=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}-\frac{1}{x-2}\)
\(=\frac{x+2}{x+3}-\frac{5}{x\left(x+3\right)-2\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) x2 - 9 = 0 <=> ( x - 3 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=3\left(nhan\right)\\x=-3\left(loai\right)\end{cases}}\)
x = 3 => \(P=\frac{3-4}{3-2}=-1\)
c) \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)
Để P đạt giá trị nguyên => \(\frac{2}{x-2}\)nguyên
=> \(2⋮x-2\)
=> \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-2 | 1 | -1 | 2 | -2 |
x | 3 | 1 | 4 | 0 |
Vậy ...
a,ĐKXĐ:\(x\ne2,x\ne-3\)
\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x-4}{x-2}\)
c,Để A = - 3/4
thì: \(\frac{x-4}{x-2}=-\frac{3}{4}\)
\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)
\(4x-16=-3x+6\)
\(4x+3x=6+16\)
\(7x=22\)
\(x=\frac{22}{7}\)
d,\(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=\frac{x-2}{x-2}-\frac{2}{x-2}=1-\frac{2}{x-2}\)
Để A nguyên thì: \(x-2\inƯ\left(2\right)\)
Ta có: \(Ư\left(2\right)=\left\{\pm1,\pm2\right\}\)
Xét từng TH:
_ x - 2 = -1 => x = 1
_ x - 2 = 1 => x = 3
_ x - 2 = -2 => x = 0
_ x- 2 = 2 => x= 4
Vậy: \(x\in\left\{0,1,3,4\right\}\)
=.= hok tốt!!
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt
d) \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)
\(\Leftrightarrow x-2< 0\) ( vì \(-1< 0\))
\(\Leftrightarrow x< 2\)
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(A=\frac{-1}{x-2}\)
\(P=\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
\(=\frac{1}{a.\left(a-1\right)}+\frac{1}{\left(a-1\right).\left(a-2\right)}+\frac{1}{\left(a-2\right).\left(a-3\right)}+\frac{1}{\left(a-3\right).\left(a-4\right)}+\frac{1}{\left(a-4\right).\left(a-5\right)}\)
a) ĐKXĐ: \(a\ne0;1;2;3;4;5;6\)
b) \(P=\frac{1}{a-1}-\frac{1}{a}+\frac{1}{a-2}-\frac{1}{a-1}+\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}\)
\(A=\frac{1}{a-5}-\frac{1}{a}=\frac{a-\left(a-5\right)}{a.\left(a-5\right)}=\frac{5}{a.\left(a-5\right)}\)
c) \(a^3-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2a^2-2a+2a+2=0\)
\(\Leftrightarrow a^2.\left(a+1\right)-2a.\left(a+1\right)+2.\left(a+1\right)=0\)
\(\Leftrightarrow\left(a+1\right).\left(a^2-2a+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1=0\\a^2-2a+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\\left(a-1\right)^2=-1\left(loai\right)\end{cases}}}\)
Thay a=-1 vào P
\(P=\frac{5}{a.\left(a-5\right)}=\frac{5}{-1.\left(-1-5\right)}=\frac{5}{6}\)