K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

ĐKXĐ: x khác 1, x khác -1

a) \(P=\frac{5x-7}{2\left(x-1\right)}-\frac{4}{x^2-1}+\frac{9-3x}{2\left(x-1\right)}\)

\(P=\frac{8x-2}{2\left(x-1\right)}-\frac{4}{\left(x+1\right)\left(x-1\right)}\)

\(P=\frac{2\left(4x-1\right)}{2\left(x-1\right)}-\frac{4}{\left(x+1\right)\left(x-1\right)}\)

\(P=\frac{\left(4x-1\right)\left(x+1\right)-4}{\left(x+1\right)\left(x-1\right)}\)

\(P=\frac{4x^2+4x-x-1-4}{\left(x+1\right)\left(x-1\right)}\)

\(P=\frac{4x^2+3x-5}{\left(x+1\right)\left(x-1\right)}\)

24 tháng 1 2020

a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\)\(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)

+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)

\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)

+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)

+) \(x+1\ne0\Leftrightarrow x\ne-1\)

+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)

\(\Leftrightarrow x\ne0;x\ne-2\)

+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)

Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)

24 tháng 1 2020

a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)

\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)

\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)

b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)

Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x-2-6-3-2-11236
x-4-1013458

Vậy ............................

7 tháng 9 2019

PLEASE HELP ME !!!

17 tháng 3 2020

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

16 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

28 tháng 11 2018

ĐKXĐ : \(x\ne\pm3\)

a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)

\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)

\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)

\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)

\(A=\frac{4x+1}{2\left(x-3\right)}\)

b) \(\left|x-5\right|=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)

Mà ĐKXĐ x khác 3 => ta xét x = 7

\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)

c) Để A nguyên thì 4x + 1 ⋮ 2x - 3

<=> 4x - 6 + 7 ⋮ 2x - 3

<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3

Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3

=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }

=> x thuộc { 2; 1; 5; -2 }

Vậy .....

28 tháng 11 2018

a)   ĐKXĐ: \(x\ne\pm3\)

   \(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)

 \(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)

\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)

\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)

b)

  Có 2 trường hợp:

T.Hợp 1:

               \(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)

thay vào A ta được: A=\(-\frac{13}{8}\)

T.Hợp 2:

          \(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)

Vậy không tồn tại giá trị của A tại x=3

Vậy với x=7 thì A=-13/8

c)

      \(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)

Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)

Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .

Vậy không có giá trị nguyên nào của x để A nguyên

  

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)