Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi chiều dài 3 tấm vải lúc đầu lần lượt là a,b,c.
Theo đề bài, ta có: a+b+c= 126 (m)
và \(a-\frac{1}{2}\cdot a=b-\frac{2}{3}\cdot b=c-\frac{3}{4}\cdot c\)
\(\Leftrightarrow\left(1-\frac{1}{2}\right)a=\left(1-\frac{2}{3}\right)b=\left(1-\frac{3}{4}\right)c\)
\(\Leftrightarrow\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)
Đến đây tự tìm a,b,c.
Bài 2:
Gọi số sách ở 3 tủ lần lượt là a,b,c:
Theo đề bài, ta có: a+b+c = 2250
và \(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}=\frac{a-100+b+c+100}{16+15+14}=\frac{2250}{45}=50\)
Tự tìm tiếp nha.
Bài 4: Gọi số hs khối 6,7,8,9 lần lượt là a.b.c.d .
Theo đề, ta có; b - d = 70
và \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)
Đặt \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=k\)
\(\Rightarrow a=9k\)
\(b=8k\)
\(c=7k\)
\(d=6k\)
Thay b= 8k và d=6k vào b-d= 70:
8k - 6k = 70
2k = 70
k= 35
=> a=9k = 9* 35 = 315
(tìm b,c,d tương tự như tìm a. Sau đó kết luận)
Bài 5: Gọi số lãi của 2 tổ là a và b.
Theo đề , ta có: a+b = 12 800 000
và \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{12800000}{8}=1600000\)
(tự tìm a,b)
Bài 6:
Gọi độ dài 3 cạnh của tam giác đó là a,b,c:
Theo đề, ta có: a+b+c=22
và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{22}{10}=2,2\)
=> (tự tìm a,b,c)
Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được
Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5
Theo đề bài ta có
Xét 4 số a1;a2;a3;a4
a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay a1.a3=a2.a4) (1)
Xét 4 số a1;a2;a3;a5
a1.a5=a2.a3 (2)
Từ (1) và (2) suy ra a4=a5(không thỏa mãn)
Suy ra chỉ có 4 số khác nhau trong đó
Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
gọi các chữ số của số đó lần lượt là a,b,c
theo đề bài:các chữ số tỉ lệ vs 1;2;3 và có tổng là 18.
suy ra:a/1=b/2=c/3 và a+b+c=18
áp dụng tính chất dãy tỉ số bằng nhau
a/1=b/2=c/3=a+b+c/1+2+3=18/6=3
a/1=3 suy ra a=3
b/2=3 suy ra b=6
c/3=3 suy ra c=9
KL: vậy số cần tìm là 369
Gọi số hs khổi 6,7,8 lần lượt là a,b,c (hs)(a,b,c∈N*)
Ta có \(a:b:c=41:30:29\Rightarrow\dfrac{a}{41}=\dfrac{b}{30}=\dfrac{c}{29}\) và \(a-b+c=320\left(hs\right)\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{41}=\dfrac{b}{30}=\dfrac{c}{29}=\dfrac{a-b+c}{41-30+29}=\dfrac{320}{40}=8\\ \Rightarrow\left\{{}\begin{matrix}a=328\\b=240\\c=232\end{matrix}\right.\)
Vậy số hs khối 6,7,8 lần lượt là 328 hs, 240 hs, 232 hs
Gọi số học sinh của 3 khối 6, 7, 8 lần lượt là x; y; z
Mà x; y; z lần lượt tỉ lệ vơi 41; 30; 29.
Theo đề bài, ta có: \(\dfrac{x}{41}=\dfrac{y}{30}=\dfrac{z}{29}\)và \(x+z-y=320\)(x; y; z ∈ N*; ≠ 0).
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{41}=\dfrac{y}{30}=\dfrac{z}{29}=\dfrac{x+z-y}{41+29-30}=\dfrac{320}{40}=8\)
=> x = 8.41 = 328 học sinh.
=> y = 8.30 = 240 học sinh.
=> z = 8.29 = 232 học sinh