Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H 1 2 3 4
GT tam giác ABC cân
\(\widehat{A}< 90^o\)
\(BD\perp AC\left(D\in AC\right)\)
\(CE\perp AB\left(E\in AB\right)\)
BD và CE cắt nhau tại H
KL : BD = CD
tam giác BHC cân
AH là đường trung trực của BC
a) Xét tam giác BDC và tam giác CEB có
\(\widehat{BDC}=\widehat{CEB}=90^o\)
BC cạnh chung
\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )
=> tam giác BDC = tam giác CEB (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
b) Vì tam giác ABC là tam giác cân
=> \(\widehat{B}=\widehat{C}\)
Vì \(\widehat{B}=\widehat{C}\)
=> tam giác BHC cân
c) Kẻ AH
chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v
a, xét tam giác ODA và tam giác ODB có : OD chung
^DOB = ^DOA do OD là pg của ^BOA (gt)
OA = OB (gt)
=> tam giác ODA = tam giác ODB (c-g-c)
b, t đoán đề là cm OD _|_ AB
tam giác ODA = tam giác ODB (câu a)
=> ^ODA = ^ODB (đn)
mà ^ODA + ^ODB = 180 (kb)
=> ^ODA = 90
=> OD _|_ AB
c, xét tam giác BOE và tam giác AOE có : OE chung
^BOD = ^AOD (câu a)
OB = AO (gt)
=> tam giác BOE = tam giác AOE (c-g-c)
=> EB = EA (đn) => E thuộc đường trung trực của AB
OB = OA (Gt) => O thuộc đường trung trực của AB
=> OE là trung trực của AB
Bài làm
Gọi giao điểm của BD và AI là O
Xét tam giác AOB và tam giác IOB có:
^AOB = ^IOB = 00°
BO chung
^ABO = ^IBO ( do BD phân giác )
=> ∆AOB = ∆IOB ( g.c.g )
=> AO = OI
=> O là trung điểm của AI.
Mà BD vuông góc với AI tại O
=> BD là trung trực của AI
B A C D E F S
a) Tam giác ABD và EBD có:
Góc ABD = EBD (BD là phân giác)
Cạnh BA = BE (gt)
Cạnh BD chung
=> Tam giác ABD = EBD (c-g-c) (*)
b) Từ (*) => góc BED = 90 độ (= góc BAD)
=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE (1)
mà từ (*) => DE = AD (2)
Từ (1) và (2) => DC > AD
c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm
Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC
=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.
Vậy B, D, S thẳng hàng.