K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Đề không đủ dữ kiện để tính toán. Bạn xem lại nhé.

15 tháng 10 2019

\(\frac{x2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)

Tương tự ta có:

\(\frac{y^2}{x+z}+y=\frac{y\left(x+y+z\right)}{x+z};\frac{z^2}{x+y}+z=\frac{z\left(x+y+z\right)}{x+y}\)

Cộng vế theo vế ta có:

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+x+y+z=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+2020=2020\)

E ms bt bài này thôi ạ

15 tháng 10 2019

câu 3 đây nha https://h.vn/hoi-dap/question/863392.html

16 tháng 6 2019

gt\(\Leftrightarrow\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

Vì \(x^2,y^2,z^2\ge0\) và các phép trừ trong ngoặc lớn hơn 0

nên x=y=z=0

=> M=0+0+0=0

5 tháng 8 2015

bài này ko phải lớp 9 đâu vì mk thấy nó trong đề thi HSG mà 

12 tháng 2 2016

Mình biết nhưng bài giải hơi tóm tắt bạn có cần không :)

25 tháng 5 2017

1.

Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:

         \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

tương tự, ta có:

         \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)

         \(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)

Cộng theo vế của 3 BĐT trên, ta được:

     \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)        (ĐPCM)

ý b nghĩ đã ~.~

25 tháng 5 2017

2. 

P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)

Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!