Cho a/b=c/d.CMR: a,\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn a/b=c/d=k

=>a=bk; c=dk

b: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

 

17 tháng 1 2016

lớp mấy 7 ak??

 

17 tháng 1 2016

(a+b) (c+d) = a^2 + b^2 c^2 + d^2

4 tháng 2 2016

lớp mấy vậy bạn

4 tháng 2 2016

40 - - là s z 

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

17 tháng 6 2019

15.

Ta  có \(a+b+c+ab+bc+ac=6\)

Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)

=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)

=> \(a+b+c\ge3\)

\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)

17 tháng 6 2019

Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành

\(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)

Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)

Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)

                                     \(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)

Tóm lại bđt được chứng minh

Dấu "=": tại a=b=c

22 tháng 2 2016

a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)

Ta có : |x(x2 - 3)| = x

<=> x(x2 - 3) = x  <=> x2 - 3 = x : x = 1 <=> x2 = 4

Vì x \(\ge\) 0 nên x = 2

14 tháng 3 2016

Theo bài ra: $8\frac{a}{b}=\frac{a}{b-a}\leftrightarrow a(8a-7b)=0\leftrightarrow a=0$ hoặc $8a=7b$.Suy ra công thức tối giản của phân số đó là $0$ hoặc $\frac{7}{8}$.

14 tháng 3 2016

\(\frac{a}{b-a}=8.\frac{a}{b}\)

\(=>ab=8a.\left(b-a\right)=8ab-8a^2\)

\(=>8a^2=8ab-ab=7ab\)

\(=>8a=7b=>\frac{a}{b}=\frac{7}{8}\) (thỏa mãn a/b tối giản)

23 tháng 3 2016

mn giúp

14 tháng 4 2017

Này bạn làm sao để ra dấu phân số vậy

30 tháng 3 2016

\(C=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(C=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)

\(C=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right).\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(100-1\right)\left(100+1\right)}{100^2}\)

\(C=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{99.101}{100^2}\)

\(C=\frac{2.3^2.4^2.5^2...99^2.100.101}{2^2.3^2.4^2...100^2}\)

\(C=\frac{101}{200}\)

30 tháng 3 2016

ế đùa, bài này có trong đề thi học sinh gỏi cấp huyện huyện mình

27 tháng 4 2016

câu b:(3/10/99+4/10/99-5/8/299)*(1/2-1/3-1/6)

   =(3/10/99+4/10/99-5/8/299)*(3/6-2/6-1/6)

   =(3/10/99+4/10/99-5/8/299)*0

  =0

27 tháng 4 2016

(xEN*/7<=x+6<=43,x-1 chia hết cho 6)(tui nghĩ là vậy gianroi)