K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

ABAC=52⇒AB=52ACABAC=52⇒AB=52AC

Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

AB2+AC2=BC2AB2+AC2=BC2

=>AB2+AC2=262 (1)

Thay AB=52ACAB=52AC vào (1) ta được:

(52AC)2+AC2=262⇒254AC2+AC2=676(52AC)2+AC2=262⇒254AC2+AC2=676

=>294AC2=676⇒AC2≈93,2⇒AC≈9,7

13 tháng 5 2021

AB/AC = 5/2 ⇒ AB = 5/2AC

Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

\(AB^2+AC^2=BC^2\) \(\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\) \(\Rightarrow\frac{29}{4}AC^2=676\) \(\Rightarrow AC^2\approx93,2\left(cm\right)\)

⇒ AC ≈ 9,7(cm)

=> AB = 5/2 AC = 5/2 . 9,7 = 24,25(cm)

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E1, C/m BD=CE2, Tính AD&BD theo b,cBài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.Tinh góc ADBBài...
Đọc tiếp

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E

1, C/m BD=CE

2, Tính AD&BD theo b,c

Bài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.

Tinh góc ADB

Bài 3:Tính 

\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)

Bài 4:

Cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c\(\ne0\); a=2005

Tính b,c

Bài 5:

Chứng minh rằng hệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)thì ta có hệ thức\(\frac{a}{b}=\frac{c}{d}\)

Bài 6:

Vẽ đồ thị hàm số

\(y=\hept{\begin{cases}2x;x\ge0\\x,x< 0\end{cases}}\)

Bài 7: Độ dài cạnh của tam giác ứng với tỉ lệ 2,3,4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với những số nào?

Cứu mình với thầy chủ nhiệm giao bài "dễ"quá mình cảm động tới rớt nước mắt òi. Vắt não từ hôm qua tới giờ mới làm được mấy bài dễ.T^T T^T T^T T^T

1
1 tháng 5 2018

4/

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a = b = c = 2005

6 tháng 3 2019

Giải :

Hình vẽ ; giả thiết, kết luận đã được đầu bài cho sẵn.

Chứng minh :

Xét \(\Delta AMC\text{ và }\Delta BMD\), có :

\(MA=MB\text{ (gt)}\)

\(\angle AMC=\angle DMB\text{ (đối đỉnh)}\)

\(DM=CM\text{ (gt)}\)

\(\Rightarrow\Delta AMC=\Delta BMD\text{ (c.g.c)}\)

10 tháng 3 2019

b/ Ta có : \(\bigtriangleup AMC=\bigtriangleup BMD\text{ (c.m.t)}\)

\(\Rightarrow\widehat{DBM}=\widehat{ACM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (1)

\(\Rightarrow BD//AC\)

Xét \(\bigtriangleup DMA\text{ và }\bigtriangleup BMC,\text{ có :}\)

\(\widehat{DMA}=\widehat{BMC}\text{ (đối đỉnh)}\)

\(DM=CM\left(gt\right)\)

\(BM=AM\left(gt\right)\)

\(\Rightarrow\bigtriangleup DMA=\bigtriangleup BMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{ADM}=\widehat{DCM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (2)

\(\text{Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành}\) (3)

\(\angle ACB=90^{\text{o}}\) (4)

\(\text{T}ừ\text{ (3) và (4) suy ra hình bình hành ABCD là hình chữ nhật}\) (đpcm)

14 tháng 7 2018

a, góc BAH = góc HCA vì cùng phụ vời góc HAC

b, Kẻ DK vuông góc với AC.

BA= BD(gt) nên tam giác ABD cân tại A

Suy ra: góc BAD= góc BDA

Mà góc BDA +góc HAD = 90 độ (vì tam giác AHD vuông tại A) ,góc BAD+ góc KAD =góc BAC =90 độ

Do đó: góc HAD =góc KAD

Chứng minh được tam giác HAD =tam giác KAD (cạnh huyền-góc nhọn)

Dẫn đến góc HAD =góc KAD hay góc HAD= góc DAC và lại có tia AD nằm giữa 2 tia AH,AC

Vậy AK là tia p/g của góc HAC

c, tam giác HAD= tam giác KAD(cmt) nên AH=AK

                                                              DH=DK (1)

tam giác DKC vuông tại K nên DK<DC (2) và KC<DC

TỪ (1) và (2) suy ra: DH<DC

d, Ta có: AB =BD(gt), AK =AH(cmt) và KC<DC(cmt)

Do đó: AB +AK +KC < BD +AH +DC

Nên : AB+AC < BC+AH < BC +2AH

Vậy AB+AC < BC+ 2AH

Bài làm

Theo công thức tính diện tích hình thang:

Đáy lớn và đáy nhỏ

Ta mang cộng vào

Cộng vào nhân với chiều cao

Chia đôi lấy nửa thế nào cũng ra.

Vậy, theo đề bài trên, đáp án đúng là:

D.\(\frac{1}{2}.\left(a+b\right).h\)

# Chúc bạn học tốt #

12 tháng 12 2018

(Các công thứ ĐÚNG nói về diện tích hình thang là :

(B) \(\left(\frac{a+b}{2}\right)\times h\)

(Diện tích của hình thang bằng chiều cao nhân với trung bình cộng của hai cạnh đáy)

(C) \(\frac{(a+b)\times h}{2}\)

(Diện tích của hình thang bằng tổng độ dài 2 cạnh đáy nhân với chiều cao rồi chia cho 2)

(D) \(\frac{1}{2}\times\left(a+b\right)\times\text{h}\)

(Diện tích của hình thang bằng đường trung bình nhân với chiều cao)

Okay !

29 tháng 2 2020

A K M I C H B N

a)

Ta có nối K với M 

=> Xét t/gMCK và t/gMHC ta có:

CK=CH (gt) hay ^KCM=^MCH (gt)

MC (cạnh chung)

=>t/gMCK = t/gMCH (c.g.c)

=>MK=MH ( tương ứng)

đpcm.

b) Tiếp tục nối K và H

Gọi I là giao điểm của CM và KH

Xét t/gICK và t/gICH ta có:

CK=CH (gt) hay ^HCM=^CMK  (gt)

CI (cạnh chung)

=>t/gICK=t/gICH (c.g.c)

=>^CIK=^CIH( tương ứng)

Mà ^CIK+^CIH=180o( góc kề bù)

=>^CIK=^CIH=90o

=>CI_|_HK 

=>CM_|_HK

đpcm.

c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)

Vì ^KCM+^MCN=90o

=>^MCN=90o-^KCM

=>^MCN=90o-35o

=>^MCN=65o(2)

Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.

đpcm.

29 tháng 2 2020

Phạm Mai Oannh , tại sao góc CMH = góc CMN =65 độ vậy bn