Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2+b^2+c^2+d^2-ab-ac-ad>=0
=>(1/a*a^2-ab+b^2)+(1/4a^2-ac+c^2)+(1/4a^2-ad+d^2)+1/4*a^2>=0(đúng)
Với mọi a;b;c;d;e ta có:
\(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\) (đpcm)
Dấu "=" xảy ra khi \(\dfrac{a}{2}=b=c=d=e\)
BĐT
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-\left(4ab+4ac+4ad+4ae\right)\ge0\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\), luôn đúng với \(\forall a,b,c,d,e\in R\)
Dấu "=" xảy ra khi và chỉ khi \(a=2b=2c=2d=2e\)
BĐT này do giáo sư Vasile đề xuất, và đây là lời giải của ông ấy:
Do vai trò của các biến là như nhau, ko mất tính tổng quát, giả sử \(a^2=max\left\{a^2;b^2;c^2;d^2\right\}\)
\(\Rightarrow a^2\ge\dfrac{b^2+c^2+d^2}{3}\)
Đặt \(x^2=\dfrac{b^2+c^2+d^2}{3}\Rightarrow x^2\le a^2\) (1)
Đồng thời \(x^2=\dfrac{b^2+c^2+d^2}{3}\ge\dfrac{1}{9}\left(b+c+d\right)^2=\dfrac{a^2}{9}\Rightarrow a^2\le9x^2\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\left(a^2-x^2\right)\left(a^2-9x^2\right)\le0\) (3)
Ta có:
\(b^4+c^4+d^4=\left(b^2+c^2+d^2\right)^2-2\left(b^2c^2+c^2d^2+b^2d^2\right)\le\left(b^2+c^2+d^2\right)^2-\dfrac{2}{3}\left(bc+cd+bd\right)^2\)
\(=\left(b^2+c^2+d^2\right)^2-\dfrac{1}{6}\left[\left(b+c+d\right)^2-\left(b^2+c^2+d^2\right)\right]^2=9x^4-\dfrac{1}{6}\left(a^2-3x^2\right)^2=\dfrac{45x^4+6a^2x^2-a^4}{6}\)
Do đó:
\(12\left(a^4+b^4+c^4+d^4\right)\le12a^4+12.\dfrac{45x^4+6a^2x^2-a^4}{6}=90x^4+12a^2x^2+10a^4\)
Nên ta chỉ cần chứng minh:
\(7\left(a^2+3x^2\right)^2\ge90x^4+12a^2x^2+10a^4\)
\(\Leftrightarrow a^4-10a^2x^2+9x^4\le0\)
\(\Leftrightarrow\left(a^2-9x^2\right)\left(a^2-x^2\right)\le0\) (đúng theo (3))
Vậy BĐT được chứng minh hoàn tất.
Dấu "=" xảy ra khi \(b=c=d=-\dfrac{a}{3}\) và các hoán vị của chúng
có thiếu ĐK nào k bạn ?
áp dụng BĐT cauchy :
\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)
việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))
dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
\(c\ge a,c\ge b\Rightarrow c\ge a+b\)(luôn đúng)
WTF!?!mấy cái dữ liện trên làm cảnh ak!?!
v:))
???