Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca
<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)
dấu = xảy ra khi a =b=c
a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2
b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2
a−c<b<=>a2+c2−2ac<b2a−c<b<=>a2+c2−2ac<b2
Cộng các vế ta có
2(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)
\(P=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\Rightarrow P^2=\frac{b^4c^4+c^4a^4+a^4b^4+2a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^2b^2c^2}\)
\(P^2\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)+2a^2b^2c^2}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)
\(\Rightarrow P\ge\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
a) Áp dụng BĐT tam giác:
b-c<a
\(\Leftrightarrow\left(b-c\right)^2< a^2\)(đpcm).
b) Áp dụng BĐT tam giác:
\(a< b+c\)
\(\Leftrightarrow a^2< ab+ac\)
TTự, có: \(b^2< bc+ab,c^2< ac+bc\)
Cộng 3 BĐT, ta được: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(BĐT\Leftrightarrow\sum\dfrac{2bc}{1+a^2}\le\dfrac{3}{2}\Leftrightarrow\sum\dfrac{-2bc}{2a^2+b^2+c^2}\ge-\dfrac{3}{2}\)
\(\Leftrightarrow\sum\dfrac{2a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}\ge\dfrac{3}{2}\)
ÁP dụng BĐT cauchy-schwarz:
\(\sum\dfrac{2a^2}{2a^2+b^2+c^2}\ge\dfrac{2\left(a+b+c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)
và \(\sum\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}=\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(a-c\right)^2}{2b^2+a^2+c^2}\ge\dfrac{4\left(a-c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a-c\right)^2}{a^2+b^2+c^2}\)
( Lưu ý : \(\left(c-a\right)^2=\left(a-c\right)^2\)) (1)
Do vậy cần chứng minh \(\dfrac{\left(a+b+c\right)^2+2\left(a-c\right)^2}{2\left(a^2+b^2+c^2\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)^2+4\left(a-c\right)^2\ge6\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow ab+bc-ac-b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\) (*)
(*) không phải luôn đúng, tuy nhiên ta có thể ép cho nó đúng .
bằng cách đáng giá tương tự BĐT (1) :
\(\left\{{}\begin{matrix}\dfrac{\left(b-a\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(b-a\right)^2}{a^2+b^2+c^2}\\\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(c-b\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(c-b\right)^2}{a^2+b^2+c^2}\end{matrix}\right.\)
ta thu được BĐT cần chứng minh tương đương \(\left\{{}\begin{matrix}\left(b-c\right)\left(c-a\right)\ge0\left(3\right)\\\left(c-a\right)\left(a-b\right)\ge0\left(4\right)\end{matrix}\right.\)
Dễ thấy \(\left(a-b\right)\left(b-c\right).\left(b-c\right)\left(c-a\right).\left(c-a\right)\left(a-b\right)=\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\ge0\)
tích của chúng là 1 số không âm nên có ít nhất 1 số không âm .Chứng tỏ có ít nhất 1 BĐT đúng
Do đó ta có đpcm
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
2) Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó, ta có: \(a^2+bc\le a^2+ac\le\left(a+c\right)^2\)
Vậy chỉ cần chứng minh
\(\left(a+b\right)^2\left(b+c\right)^2\ge4\left(b^2+ca\right)\left(c^2+ab\right)\)
Lợi dụng AM-GM ngay, ta được
\(4\left(b^2+ca\right)\left(c^2+ab\right)\le\left(b^2+ca+c^2+ab\right)^2=\left(b^2+ab+bc+ca+c^2-bc\right)^2=\left[\left(b+a\right)\left(b+c\right)+c\left(c-b\right)^2\right]\le\left(b+a\right)^2\left(b+c\right)^2\)
Đẳng thức xảy ra khi a=b;c=0 và hoán vị
3) \(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Lợi dụng AM-GM, ta được
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}\ge2\left(a+b\right)\)
Tương tự với các BĐT tiếp theo
Cộng vế theo vế rồi rút gọn ta được đpcm
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ \(x^2+y^2\ge2xy\)
chứng minh : \(x^2+y^2\ge2xy< =>\left(x-y\right)^2\ge0\)*đúng*
Áp dụng vào bài toán ta được :
\(2.LHS\ge ab+bc+ca+ab+bc+ca=2\left(ab+bc+ca\right)\)
\(< =>LHS\ge ab+bc+ca\)
Dấu = xảy ra \(< =>a=b=c\)
Áp dụng bất đẳng thức tam giác có a+b>c
<=>ac+bc > c2 (c>0)
<=>a+b
Tương tự có:ab+cb>b2 ac+ab >a2ab+bc>b2,ac+ab>a2
Cộng các bất đẳng thức trên ra điều phải chứng minh
2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)
\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c\)
cám ơn