K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2023

\(Từ:gt\) \(a+b+c=0\)

\(\Rightarrow b+c=-a\Rightarrow b^2+2bc+c^2=a^2\Rightarrow a^2-b^2-c^2=2bc\)

cmt tương tự với :

\(b^2-a^2-c^2=2ac\)

\(c^2-a^2-b^2=2ab\)

\(\Rightarrow A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(\Rightarrow A=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(\Rightarrow A=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(\Rightarrow A=\dfrac{3abc}{2abc}\)

\(\Rightarrow A=\dfrac{3}{2}\)

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

27 tháng 12 2018

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

\(\Rightarrow VT=\dfrac{ab}{a^2+b^2-c^{^2}}+\dfrac{bc}{b^2+c^2-a^{^2}}+\dfrac{ca}{c^2+a^2-b^{^2}}\\ =\dfrac{ab}{a^2+\left(b+c\right)\left(b-c\right)}+\dfrac{bc}{b^2+\left(c+a\right)\left(c-a\right)}+\dfrac{ca}{c^2+\left(a+b\right)\left(a-b\right)}\\ =\dfrac{ab}{a^2-a\left(b-c\right)}+\dfrac{bc}{b^2-b\left(c-a\right)}+\dfrac{ca}{c^2-c\left(a-b\right)}\\ =\dfrac{b}{a-b+c}+\dfrac{c}{b-c+a}+\dfrac{a}{c-a+b}\\ =\dfrac{b}{\left(a+c\right)-b}+\dfrac{c}{\left(a+b\right)-c}+\dfrac{a}{\left(c+b\right)-a}\\ =\dfrac{b}{-b-b}+\dfrac{c}{-c-c}+\dfrac{a}{-a-a}\\ =\dfrac{b}{-2b}+\dfrac{c}{-2c}+\dfrac{a}{-2a}\\ =-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{3}{2}=VP\)

17 tháng 5 2018

Violympic toán 9

2 tháng 7 2018

Áp dụng bđt AM-GM:

\(\sum\dfrac{a^3}{a^2+b^2}=\sum\left(a-\dfrac{ab^2}{a^2+b^2}\right)\ge\sum\left(a-\dfrac{b}{2}\right)=a+b+c-\dfrac{a}{2}-\dfrac{b}{2}-\dfrac{c}{2}=\dfrac{a+b+c}{2}\)

\("="\Leftrightarrow a=b=c\)

21 tháng 6 2017

làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)

\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)

\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)

21 tháng 6 2017

ok thỏa thuận rồi tui làm nửa sau thui nhé :D

Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:

\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)

Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)

Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:

\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)

\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)

\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)

Can you continue

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Đặt \(\left ( \frac{\sqrt{a^2+b^2}}{c},\frac{\sqrt{b^2+c^2}}{a}, \frac{\sqrt{c^2+a^2}}{b} \right )=(x,y,z)\)

BĐT cần chứng minh tương đương với:
\(x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)\((*)\)

------------------------------------------------------------------

Từ cách đặt $x,y,z$ ta có:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=1\)

Áp dụng BĐT Bunhiacopxky:

\(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}=\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\right)\left(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}\right)\)

\(\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

\(\Leftrightarrow 3\geq 2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Leftrightarrow xyz\geq \frac{2}{3}(x+y+z)\)

\(\Rightarrow xyz(x+y+z)\geq \frac{2}{3}(x+y+z)^2\)

Áp dụng BĐT AM_GM ta lại có:

\((x+y+z)^2\geq 3(xy+yz+xz)\). Do đó:

\(xyz(x+y+z)\geq 2(xy+yz+xz)\)

\(\Leftrightarrow x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Đúng theo \((*)\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

20 tháng 1 2018

áp dụng bat dang thuc bunhiacóki

ta có \(\dfrac{\sqrt{a^2+b^2}}{c}\ge\dfrac{a+b}{\sqrt{2}c}\)

ttu vt \(\ge\dfrac{1}{\sqrt{2}}\left(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\right)\)

=\(\dfrac{a}{\sqrt{2}}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{b}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{c}\right)+\dfrac{c}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) (1)

áp dung bdt \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

ta có (1) \(\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\)

tiếp tục áp dụng bunhia ta có \(\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{\sqrt{2\left(b^2+c^2\right)}}=\dfrac{2a}{\sqrt{b^2+c^2}}\)

ttuong tu ta có \(vt\ge2\left(\dfrac{a}{\sqrt{b^2+c2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\left(dpcm\right)\)

5 tháng 1 2018

Áp dụng BĐT phụ:

\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)

P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)

Xét M=\(\sum\dfrac{a}{3a+2b+c}\)

\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)

\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)

\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)

\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrow\)\(M\le\dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)

5 tháng 1 2018

Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1

14 tháng 7 2017

a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)

\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

14 tháng 7 2017

b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)

\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)