Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\)
\(\le b^2\left(c-b\right)+c^2\left(1-c\right)\)
\(=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)+c^2\left(1-c\right)\)
\(\le\frac{4.\left(\frac{b}{2}+\frac{b}{2}+c-b\right)^3}{27}+c^2\left(1-c\right)\)
\(\le\frac{4.c^3}{27}+c^2\left(1-c\right)\)
\(=c^2\left(1-\frac{23c}{27}\right)\)
\(=\frac{23c}{54}.\frac{23c}{54}.\left(1-\frac{23c}{27}\right).\frac{2916}{529}\)
\(\le\frac{2916}{529}.\frac{\left(\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}\right)^3}{27}=\frac{108}{529}\)
Dấu = xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)
CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1
Do \(x,y\inℤ^+\) nên \(x,y\ge1\)
\(2^x+1=3^y\).Dễ thấy \(x\le y\).Đặt \(y=x+m\left(m\ge0\right)\) và \(m=y-x\)
Ta có: \(2^x+1=3^{x+m}\)
+Với \(x=y=1\Rightarrow2^1+1=3^{1+0}\left(TM\right)\)
+Với \(1\le x< y\Rightarrow3\le2^x+1< 2^y+1< 3^y\left(KTM\right)\)
Vậy \(x=y=1\) (p/s: không chắc cho lắm,tui mới học lớp 7 thoy)
áp dụng bđt bunhia cốp xki ta có cặp số \(\left(a,2b,c\right)\left(1,\sqrt{2},1\right)\)
\(\left(a^2+2b^2+c^2\right)\left(1+\sqrt{2}+1\right)>=\left(a+b+c\right)^2\)
\(a^2+2b^2+c^2>=\frac{0^2}{2+\sqrt{2}}=0\)
dấu "=" xảy ra khi và chỉ khi \(\frac{a^2}{1}=\frac{b^2}{\sqrt{2}}=\frac{c}{1}\)
vậy min P =0
sorry bạn mình ko tìm đc giá trị lớn nhất mà chỉ tìm đc giá trị nhỏ nhất thôi
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)