Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
Sửa:
Cho các số nguyên dương a ; b ; c đôi một khác nhau thỏa mãn a2 + b2 = c2 .CMR: ab chia hết cho a + b + c
\(gt\Leftrightarrow a^2+b^2+2ab=c^2+2ab\Leftrightarrow\left(a+b\right)^2-c^2=2ab\)
\(\Leftrightarrow\left(a+b+c\right)\left(a+b-c\right)=2ab\)
\(\Leftrightarrow\frac{ab}{a+b+c}=\frac{a+b-c}{2}\)
Neu can chung minh \(ab⋮a+b+c\) thi can cm \(a+b-c\) chan ma ta ci a+b+c va a+b-c cung tinh chan le va \(a^2;b^2;c^2\equiv0;1;2\left(mod4\right)\)
*)c du 0 => a;b du 0 => a+b+c chia het 4 hay a+b+c chan hay a+b-c chan -> QED
*)c du 1 => a du 0;b du 1 =>a+b+c chan hay a+b-c chan ->QED
*)c du 2: +) a;b du 1 => a+b+c du 4 hay a+b+c du 0 => a+b+c chan hay a+b-c chan ->QED
+)a du 0;b du 2 =>a+b+c chia het => a+b+c chan =>a+b-c chan ->QED