Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a+b-c=x
-a+b+c=y
a-b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
Đặt a+b‐c=x
‐a+b+c=y
a‐b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
Ta có a, b , c là 3 cạnh của 1 tam giác
=> Đặt: z = a + b - c > 0 ; x = b + c - a> 0 ; y = a + c - b>0
khi đó: x + y + z = a + b + c
và \(a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
Để chứng minh: \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)(1)
Ta cần chứng minh:
\(\frac{\left(y+z\right)\left(x+z\right)}{4z}+\frac{\left(x+z\right)\left(z+y\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}\ge x+y+z\)
<=> \(\frac{xy+xz+zy+x^2}{z}+\frac{yz+x^2+yx+xz}{x}+\frac{xz+xy+y^2+yz}{y}\ge4\left(x+y+z\right)\)
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)(2)
Ta có: \(\frac{\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2}{3}\ge\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\)
\(=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) với mọi x; y ; z
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\) với mọi x; y ; z dương
Vậy (2) đúng do đó (1) đúng,
Nguyễn Linh Chi hỏi nhé : nếu x + y + z thì phải = 2 ( a + b + c ) chứ
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
cho a,b,c là 3 cạnh của tam giác
CMR:\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
hmm..
Đặt \(\left(x;y;z\right)=\left(a+b-c;b+c-a;c+a-b\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
Bất đẳng thức cần chứng minh tương đương với:
\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\ge x+y+z\)
Ta có:\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\)
\(=\frac{x^2+xy+xz+yz}{4x}+\frac{xy+yz+y^2+zx}{4y}+\frac{zx+zy+z^2+xy}{4z}\)
\(=\frac{3\left(x+y+z\right)}{4}+\frac{1}{4}\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{y^2z^2}{xyz}+\frac{z^2x^2}{xyz}+\frac{x^2y^2}{xyz}\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{\left(xy+yz+zx\right)^2}{3xyz}\right]\)\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{3xyz\left(x+y+z\right)}{3xyz}\right]\)
\(=x+y+z\)
Bất đẳng thức đã được chứng minh.
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{2}{c}\)
\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{\left(1+1\right)^2}{c+a-b+a+b-c}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{2}{b}\)
Cộng lại theo vế rồi chia cho 2, ta có đpcm
Dấu "=" xảy ra khi a = b = c
Bài làm:
Ta xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(BĐT Cauchy dạng cộng mẫu)
Tương tự ta chứng minh được:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)và \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng vế 3 bất đẳng thức trên ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi: \(a=b=c\)
Sa
Câu này mik trả lời rồi nhé bn , có trong câu hỏi tương tự nha