Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
c: Ta có: ΔBDC cân tại B
mà BF là đường phân giác
nên F là trung điểm của CD và BF\(\perp\)CD
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có
EA=ED
AF=DC
Do đó: ΔAEF=ΔDEC
Suy ra: EF=EC
hay E nằm trên đường trung trực của CF(1)
Ta có: BF=BC
nên B nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BE là đường trung trực của CF
=>BE⊥CF
hay BG⊥CF
a: Xét ΔBID và ΔBIC có
BD=BC
góc CBI=góc DBI
BI chung
Do đó: ΔBID=ΔBIC
b: Xét ΔBEC và ΔBED có
BE chung
góc EBC=góc EBD
BC=BD
Do đó: ΔBEC=ΔBED
=>ED=EC
c: ΔBCD cân tại B
mà BI là đường phân giác
nên BI vuông góc với CD
=>BI//AH
a: Xét ΔDBE và ΔCBE có
BE chung
\(\widehat{DBE}=\widehat{CBE}\)
BD=BC
Do đó: ΔDBE=ΔCBE