K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

21 tháng 2 2016

bài của bại giống hệt bài của mình chỉ khác là của mình điểm D là điểm E

28 tháng 2 2016

cân tại đâu

a: ΔADE vuông cân tại A

=>góc DEA=45 độ

b: góc HEC+góc HCE=45+45=90 độ

=>EH vuông góc BC

c: Xét ΔCBE có

EH,BA là đường cao

EH cắt BA tại D

=>D là trực tâm

=>CD vuông góc BE

d: góc HDA=180-45=135 độ

=>góc BDE=135 độ

a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-56^0}{2}=62^0\)

b: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có 

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: ME=MF

hay ΔMEF cân tại M

d: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

10 tháng 1 2021

Bạn gõ thừa chữ "cân"

a/ Xét t/g ABC vuông tại A có

\(\widehat{ABC}+\widehat{ACB}=90^o\) (t/c)

\(\Rightarrow\widehat{ABC}=90^o-40^o=50^o\)

b/ Xét t/g AMB và t/g EMC có

AM = EM

\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)MB = MC

=> t/g AMB = t/g EMC (c.g.c)c/ Có

AE // CK

=> \(\widehat{AEK}+\widehat{EKC}=180^o\) (tcp)

=> \(\widehat{AEK}=\widehat{AEC}+\widehat{CEK}=90^o\)

Xét t/g ABC vuông tại A có AM là đường trung tuyến

=> AM = 1/2 BC = BM

=> t/g AMB cân tại A

=> \(\widehat{ABC}=\widehat{BAM}\)

Mà \(\widehat{BAM}=\widehat{CEA}\)

=> \(\widehat{CBA}+\widehat{CEK}=90^o\)

=> \(\widehat{CEK}=\widehat{ACB}\)