K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
5 tháng 8 2020

Gọi J,R lần lượt là giao điểm của AI, AK với BC.

Ta có biến đổi góc:^BAR=^BAH+^HAR=^ACR+^RAC=^ARB vì vậy tam giác ABR cân tại B suy ra BO đồng thời là đường cao

Tương tự thì CO là đường cao khi đó O là trực tâm của tam giác AIK

Vậy ta có đpcm

hình vẽ trong Thống kê hỏi đáp

5 tháng 8 2020

bài 1:

AI _|_ BC tại I => \(\widehat{AIB}=\widehat{AIC}=90^o\)

BD _|_ AC tại D => \(\widehat{ADB}=\widehat{CDB}=90^o\)

xét tam giác AIC và tam giác BDC có \(\hept{\begin{cases}\widehat{AIB}=\widehat{AIC}=90^o\\\widehat{C}chung\end{cases}}\)

=> tam giác AIC đồng dạng với tam giác BCD (g-g)

b) xét tam giác ABC có AI và BD là 2 đường cao cắt nhau tại H => H là trực tâm tam giác ABC

=> CH _|_ AB => H là trực tâm tam giác ABC

xét tam giác CEB và tam giác IAB có: \(\hept{\begin{cases}\widehat{CEB}=\widehat{AIB}=90^o\\\widehat{B}chung\end{cases}\Rightarrow\Delta CEB~\Delta AIB\left(g-g\right)\Rightarrow\frac{CB}{AB}=\frac{EB}{IB}}\)

=> CB.IB=EB.AB (1)

xét tam giác CIH và CEB có \(\hept{\begin{cases}\widehat{CIH}=\widehat{CEB}=90^o\\\widehat{C}chung\end{cases}\Rightarrow\Delta CIH~\Delta CEB\left(g-g\right)\Rightarrow\frac{CI}{CE}=\frac{CH}{CB}}\)

=> CI.CB=CE.CH (2)

từ (1) và (2) => EB.AB+CH.CE=CB.IB+CI.CB

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=\left(IB+IC\right)BC=BC^2\)

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=BC^2\)

22 tháng 12 2021

a: Xét tứ giác AIHN có 

\(\widehat{AIH}=\widehat{ANH}=\widehat{NAI}=90^0\)

Do đó: AIHN là hình chữ nhật

Suy ra: AH=IN

Sửa đề: ΔABC nhọn

a) Xét ΔAIC vuông tại I và ΔBDC vuông tại D có 

\(\widehat{BCD}\) chung

Do đó: ΔAIC\(\sim\)ΔBDC(g-g)

14 tháng 7 2022

Vì tg ABC cân tại A(gt), đường cao AH 

=> AH đồng thời là đi trung trực của tgABC

=> BH=HC

Xét ΔEBH và ΔFCH có 

EB=FC(gt)

ˆB=ˆC( vì tg ABC cân tại A)

BH=CH(cmt)

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

hay H nằm trên đường trung trực của EF(1)

Ta có: AE=AF

Điểm A nằm trên đường trung trực của EF(2)

Từ (1) và (2): => E và F đối xứng nhau qua AH

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K