Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow P\le\dfrac{a}{b+c+1}+\dfrac{b}{b+c+1}+\dfrac{c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow P\le\dfrac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)=\dfrac{a-1}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)+1\)
\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{b+c+1}\right]+1\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{bc+b+c+1}\right]+1\)
\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{\left(1+b\right)\left(1+c\right)}\right]+1\)
\(\Rightarrow P\le\left(1-a\right)\left(\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right)+1\)
Do \(a;b;c\le1\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\\left(1-b^2\right)\left(1-c^2\right)\le1\\\end{matrix}\right.\) \(\Rightarrow\left(1-a\right)\left[\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right]\le0\)
\(\Rightarrow P\le1\)
\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right);\left(0;1;1\right);\left(0;0;1\right)\) và các hoán vị
Đường tròn (C) tâm \(I\left(1;0\right)\) bán kính \(R=\sqrt{10}\)
Do tam giác ABC vuông cân tại A \(\Rightarrow AB=AC\)
Lại có \(IB=IC=R\)
\(\Rightarrow AI\) là trung trực BC \(\Rightarrow AI\) đồng thời là phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{IAB}=45^0\)
\(\overrightarrow{AI}=\left(1;-1\right)\), do B thuộc đường tròn, gọi tọa độ B có dạng: \(B\left(x;y\right)\) với \(x^2+y^2-2x-9=0\)
\(\Rightarrow\overrightarrow{AB}=\left(x;y-1\right)\)
\(cos\widehat{IAB}=\dfrac{\sqrt{2}}{2}=\dfrac{\left|1.x-1\left(y-1\right)\right|}{\sqrt{2}.\sqrt{x^2+\left(y-1\right)^2}}\)
\(\Rightarrow\sqrt{x^2+y^2-2y+1}=\left|x-y+1\right|\)
\(\Rightarrow x^2+y^2-2y+1=x^2+y^2+1-2xy+2x-2y\)
\(\Rightarrow x-xy=0\Rightarrow x\left(1-y\right)=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y^2=9\Rightarrow y=\pm3\\y=1\Rightarrow x^2-2x-8=0\Rightarrow x=\left\{4;-2\right\}\end{matrix}\right.\)
Vậy tọa đô các điểm B;C tương ứng là: \(\left[{}\begin{matrix}\left(0;3\right);\left(-2;1\right)\\\left(0;-3\right);\left(4;1\right)\end{matrix}\right.\)
Do \(a\le1\Rightarrow a^2\le1\) và
\(\left(1-a^2\right)\left(1-b\right)\le0\Rightarrow1+a^2b^2\ge a^2+b\)
Mà \(0\le a,b\le1\Rightarrow a^2\ge a^3,b^2\ge b^3\)
\(\Rightarrow1+a^2b^2\ge a^3+b^3\)
Tương tự rồi cộng lại ta có được điều phải chứng minh
\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)
Mà ta có:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)
\(\Leftrightarrow2x^2-7x+5\le0\)
\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)
Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)
Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)