K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2021

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow P\le\dfrac{a}{b+c+1}+\dfrac{b}{b+c+1}+\dfrac{c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow P\le\dfrac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)=\dfrac{a-1}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)+1\)

\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{b+c+1}\right]+1\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{bc+b+c+1}\right]+1\)

\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{\left(1+b\right)\left(1+c\right)}\right]+1\)

\(\Rightarrow P\le\left(1-a\right)\left(\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right)+1\)

Do \(a;b;c\le1\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\\left(1-b^2\right)\left(1-c^2\right)\le1\\\end{matrix}\right.\) \(\Rightarrow\left(1-a\right)\left[\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right]\le0\)

\(\Rightarrow P\le1\)

\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right);\left(0;1;1\right);\left(0;0;1\right)\) và các hoán vị

NV
10 tháng 4 2022

Đường tròn (C) tâm \(I\left(1;0\right)\) bán kính \(R=\sqrt{10}\)

Do tam giác ABC vuông cân tại A \(\Rightarrow AB=AC\)

Lại có \(IB=IC=R\)

\(\Rightarrow AI\) là trung trực BC \(\Rightarrow AI\) đồng thời là phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{IAB}=45^0\)

\(\overrightarrow{AI}=\left(1;-1\right)\), do B thuộc đường tròn, gọi tọa độ B có dạng: \(B\left(x;y\right)\) với \(x^2+y^2-2x-9=0\)

\(\Rightarrow\overrightarrow{AB}=\left(x;y-1\right)\)

\(cos\widehat{IAB}=\dfrac{\sqrt{2}}{2}=\dfrac{\left|1.x-1\left(y-1\right)\right|}{\sqrt{2}.\sqrt{x^2+\left(y-1\right)^2}}\)

\(\Rightarrow\sqrt{x^2+y^2-2y+1}=\left|x-y+1\right|\)

\(\Rightarrow x^2+y^2-2y+1=x^2+y^2+1-2xy+2x-2y\)

\(\Rightarrow x-xy=0\Rightarrow x\left(1-y\right)=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y^2=9\Rightarrow y=\pm3\\y=1\Rightarrow x^2-2x-8=0\Rightarrow x=\left\{4;-2\right\}\end{matrix}\right.\)

Vậy tọa đô các điểm B;C tương ứng là: \(\left[{}\begin{matrix}\left(0;3\right);\left(-2;1\right)\\\left(0;-3\right);\left(4;1\right)\end{matrix}\right.\)

1 tháng 3 2019

Do \(a\le1\Rightarrow a^2\le1\)

\(\left(1-a^2\right)\left(1-b\right)\le0\Rightarrow1+a^2b^2\ge a^2+b\)

\(0\le a,b\le1\Rightarrow a^2\ge a^3,b^2\ge b^3\)

\(\Rightarrow1+a^2b^2\ge a^3+b^3\)

Tương tự rồi cộng lại ta có được điều phải chứng minh

14 tháng 6 2017

\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)

Mà ta có:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)

\(\Leftrightarrow2x^2-7x+5\le0\)

\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)

Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)

Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)