Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)
Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản.
a,\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi ƯCLN(a2+a-1;a2+a+1) = d
Ta có: \(\hept{\begin{cases}a^2+a-1⋮d\\a^2+a+1⋮d\end{cases}}\)
\(\Rightarrow a^2+a+1-\left(a^2+a-1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=\left\{\pm1;\pm2\right\}\)
Lại có: \(a^2+a-1=a\left(a+1\right)-1\)
Vì \(a\left(a+1\right)\)là số chẵn => a(a+1) - 1 là số lẻ
=> d là số lẻ
=> d không thể bằng 2 hoặc -2
=> d = {1;-1}
Vậy...
Ta có :
A=a3+2a2-1/a3+2a2+2a+1
A=a3+a2+a2-1/a3+a2+a2+2a+1=(a3+a2)+(a2-1)/(a3+a2)+(a2+2a+1)
A=a2(a+1)(a2-1)/a2(a+1)(a+1)2
=(a+1)(a2+a-1)/(a+1)(a2+a+1)
A=a2+a-1/a2+a+1
chúc bạn học tốt có thời gian mình giải nốt cho
mình mới học lớp 5 nên chỉ làm câu a
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2+a-1}{a^2+a+1}\)
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a) Ta có: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A -1
Rút gọn đúng cho.
b) Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1\)= \(a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left(a^2+a+1-\left(a^2+a-1\right)\right)\):d
Nên d = 1 tức là \(a^2+a+1\)và\(a^2+a-1\)là nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a. \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b. Trước hết ta nhận xét: \(\hept{\begin{cases}a^2+a-1=a\left(a+1\right)-1\\a^2+a+1=a\left(a+1\right)+1\end{cases}}\). Vì a(a + 1) là số chẵn nên cả hai số trên đều không chia hết cho 2.
Gọi d là ƯCLN của \(a^2+a-1\) và \(a^2+a+1\). Khi đó d khác 2 và \(a^2+a-1-\left(a^2+1+1\right)=-2\) chia hết d. Do d max và d khác 2 nên d = 1.
Vậy với a nguyên thì phân số \(A=\frac{a^2+a-1}{a^2+a+1}\) tối giản.
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
https://olm.vn/hoi-dap/detail/5592558947.html
Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath
Tham khảo bạn nhé!
@Nguyễn Nhật Minh@làm bài tốt!