Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A,\)\(S=\left(3+3^2\right)+\left(3+3^2\right)3^2+...+\left(3+3^2\right)3^{2018} \)
\(\Rightarrow S=9\left(1+3^2+...+3^{2018}\right)\)
\(\Rightarrow S⋮9\)
\(B,\)\(S=3+3^2+3^3+\left(3+3^2+3^3\right)3^3+...\left(3+3^2+3^3\right)3^{2017}\)
\(S=39+39.3^3+...+39.3^{2017}\)
Nhưng xét lại thì thấy 2017 không chia hết cho 3 nên câu b có lẽ sai đề =)))))
\(C,\)\(S=\left(1+3+3^2+3^3\right).3+\left(1+3+3^2+3^3\right).3^4+...+\left(1+3+3^2+3^3\right).3^{2017}\)
\(S=40.3+40.3^4+...+40.3^{2017}\)
\(Vậy...\)
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
a)B=1+3+32+33+....+399
=(1+3)+(32+33)+...+(398+399)
=4+32.4+....+398.4
=4.(1+32+...+398) chia hết cho 4
Vậy B chia hết cho 4
b)B=1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40
Vậy B chia hết cho 40
a)B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+....+398(1+3)
=4+32.4+...+398.4
=4(1+32+...+398) chia hết cho4
câu b bạn vận dụng theo câu a là đc bạn nhóm 4 lại nhé mình hơi lười làm
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
a)Dễ ,bạn chỉ cần nhóm các số hạng thích hợp rồi rút thừa số chung ra là xong.Bạn tự làm
b)\(A=1+3+3^2+...+3^{2017}\)
\(3A=3+3^2+3^3+...+3^{2018}\)
\(3A-A=2A=3^{2018}-1\Rightarrow2A+1=3^{2018}\) (là một lũy thừa)
C/M C\(⋮\)4
\(C=1+3+3^2+...+3^{99}⋮4\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)
\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)
\(C=4+3^2.4+...+3^{98}.4⋮4\)
\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)
C/M C\(⋮\)40
\(C=1+3+3^2+...+3^{99}⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)
\(C=40.1+...+3^{96}.40⋮40\)
\(C=40.\left(1+...+3^{96}\right)⋮40\)
a) Ta có: \(A=3+3^2+3^3+...+3^{2020}\)
\(\Leftrightarrow\frac{A}{3}=1+3+3^2+...+3^{2019}\)
\(\Leftrightarrow A-\frac{A}{3}=\left(3+3^2+...+3^{2020}\right)-\left(1+3+...+3^{2019}\right)\)
\(\Leftrightarrow\frac{2}{3}A=3^{2020}-1\)
\(\Leftrightarrow A=\frac{3^{2021}-3}{2}\)
b) CM chia hết cho 4:
\(A=3+3^2+3^3+3^4+...+3^{2019}+3^{2020}\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(A=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)
\(A=\left(3+3^3+...+3^{2019}\right)\cdot4\) chia hết cho 4
CM chia hết cho 40:
\(A=3+3^2+3^3+3^4+...+3^{2017}+3^{2018}+3^{2019}+3^{2020}\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\)
\(A=3\cdot40+...+3^{2017}\cdot40\)
\(A=\left(3+...+3^{2017}\right)\cdot40\) chia hết cho 40