K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

\(\hept{\begin{cases}\left(a^3-3ab^2\right)^2=25\\\left(b^3-3a^2b\right)^2=100\end{cases}}\Leftrightarrow\hept{\begin{cases}a^6-6a^4b^2+9a^2b^4=25\\b^6-6a^2b^4+9a^4b^2=100\end{cases}}\)

Cộng 2 đẳng thức lại ta được:

\(a^6+3a^4b^2+3a^2b^4+b^6=125\Leftrightarrow\left(a^2+b^2\right)^3=125\Leftrightarrow a^2+b^2=5\)

\(\Rightarrow P=2018\left(a^2+b^2\right)=2018.5=...\)

27 tháng 12 2018

Ta có : \(a^3-3ab^2=5\)

\(\Rightarrow\left(a^3-3ab^2\right)^2=a^6-6a^4b^2+9a^2b^4=25\)

Và \(b^3-3a^2b=10\)

\(\Rightarrow\left(b^3-3a^2b\right)^2=b^6-6a^4b^2+9a^4b^2=100\)

Suy ra : \(a^6++3a^2b^4+3a^4b^2+b^6=125\)

Hoặc : \(\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)

Do đó : \(P=2018a^2+2018b^2=2018\left(a^2+b^2\right)=2018.5=10090\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

13 tháng 8 2018

1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)

\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)

\(=a^3+3a^2b+3ab^2+b^3\)

2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\)

26 tháng 12 2017

Ta có \(\left(a^3-3ab^2\right)^2\) =\(a^6-6a^4b^2+9a^2b^4=25\)

\(\left(b^3-3a^2b\right)^2=b^6-6a^2b^4+9a^4b^2=100\)

\(=>\left(a^3-3a^2b\right)^2-\left(b^3-3a^2b\right)^2=a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)

\(< =>a^6+3a^4b^2=3a^2b^4+b^6=125\)

\(< =>\left(a^2+b^2\right)^3=125\)

\(=>a^2+b^2=5\)

26 tháng 5 2019

Ta có:

\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=196\)

\(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=169\)

Lại có:

\(\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=27\)

\(\Leftrightarrow a^6+6a^4b^2+9ab^4-b^6-6a^2b^4-9a^4b^2=27\)

\(\Leftrightarrow a^6-3a^4b^2+3a^2b^4-b^6=27\)

\(\Leftrightarrow\left(a^2-b^2\right)^3=27\)

\(\Leftrightarrow a^2-b^2=\sqrt[3]{27}=3\)

26 tháng 5 2019

\(a^3+3ab^2+b^3+3a^2b=27=\left(a+b\right)^3\Rightarrow a+b=3\)

\(a^3+3ab^2-b^3-3a^2b=1\Rightarrow\left(a-b\right)^3=1\Rightarrow a-b=1\)

\(\Rightarrow a^2-b^2=\left(a-b\right).\left(a+b\right)=3\)

14 tháng 3 2020

\(a^3-3ab^2=46\)\(\Rightarrow\left(a^3-3ab^2\right)=46^2\)\(\Rightarrow a^6-6a^4b^2+9a^2b^4=2116\)

\(b^3-3a^2b=9\Rightarrow\left(b^3-3a^2b\right)^2=9^2\Rightarrow b^6-6a^2b^4+9a^4b^2=81\)

\(\Rightarrow a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=2197\)

\(\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=2197\)

\(\Rightarrow\left(a^2+b^2\right)^3=2197\)

\(\Rightarrow a^2+b^2=13\)

29 tháng 12 2018

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)

\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)

\(M=\left(a+b\right)^2=1\)

1 tháng 4 2019

ngu lắm sơn à

5 tháng 3 2019

Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)

                                   \(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)

                                   \(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)

                                   \(=5^2+10^2\)

                                    \(=125\)

\(\Rightarrow S^3=125\)

\(\Rightarrow S=5\)

8 tháng 4 2019

Ta có : \(a^3-3ab^2=5\Rightarrow\left(a^3-3ab^2\right)^2\)\(=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

            \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\)\(\Rightarrow b^6-6a^2b^4+9a^4b^2=100\)

Cộng hai vế ta được : 

\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)

\(\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=5^3\)

\(\Rightarrow a^2+b^2=5\)

\(\Rightarrow\frac{a^2+b^2}{2018}=\frac{5}{2018}\)

Chúc bạn học tốt ^^

1 tháng 5 2020

what đè he