K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)

6 tháng 3 2022

\(A=x^2yz\) \(B=xy^2z\) \(C=xyz^2\)

\(A+B+C=x^2yz+xy^2z+xyz^2\)

                    \(=xyz\left(x+y+z\right)=xyz.1=xyz\)

 

7 tháng 5 2021

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 5 2021

hộ caiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

20 tháng 3 2016

Giúp mìk đj mìk K cho

2 tháng 5 2016

Ta có:

\(A=x^2yz=x.x.y.z=x.xyz\left(1\right)\)

\(B=xy^2z=x.y.y.z=y.xyz\left(2\right)\)

\(C=xyz^2=x.y.z.z=z.xyz\left(3\right)\)

Lấy (1)+(2)+(3),vế theo vế ta được:

\(A+B+C=x.xyz+y.xyz+z.xyz=\left(x+y+z\right).xyz=xyz\) (vì x+y+z=1)

Vậy A+B+C=xyz      (đpcm)

4 tháng 4 2016

Đợi tí nhé, đừng off, mk giải ra ròi, mình sẽ chép lên cho bạn

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

Ta có : \(A+B+C=x^2yz+xy^2z+xyz^2\)

\(=xyz\left(x+y+z\right)\)

\(=xyz\left(đpcm\right)\)

23 tháng 7 2016

admin là ai

21 tháng 11 2017

A=x^2yz
B=xy^2z
C=xyz^2
=>A+B+C=x^2yz+xy^2z+xyz^2=xyz(x+y+z)=xyz

21 tháng 11 2017

\(A+B+C=xyz\)

\(VT=A+B+C\)

\(\Leftrightarrow VT=x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow VT=xyz\left(x+y+z\right)\)

\(\Leftrightarrow VT=xyz\)

\(\Rightarrow VT=VP\)

\(\Rightarrow A+B+C=xyz\left(dpcm\right)\)

ta có A+B+C=x2yz+xy2z+xyz2

=x(xyz)+y(xyz)+z(xyz)

=x.1+y.1+z.1

=x+y+z(dpcm)

18 tháng 4 2016

\(A=x^2yz=x.\left(xyz\right)=x.1=x\)

\(B=xy^2z=y.\left(xyz\right)=y.1=y\)

\(C=xyz^2=z.\left(xyz\right)=z.1=z\)

\(\Rightarrow A+B+C=x+y+z\)