Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A N O M H C B
Ta có OA là đường trung trực của BC ( tự chứng minh)
Xét tam giác BNC có: Đường trung trực của CN cắt đường trung trực của BC tại M
Gọi H là trung điểm của NB
=> MH là đường trung trực của NB
=> MH vuông OB
mà AB vuông OB
=> MH//AB
Theo định lí thalet'
\(\frac{AM}{AO}=\frac{HB}{AB}=\frac{1}{3}\)(vì HB=HN=1/2 BN=ON=> HB=1/3AB)
a) xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)
=>\(\widehat{ABO}+\widehat{ACO}=180^0\)
=> tứ giác ABOC nội tiếp
=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))
b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)
=> AO là đường trung trực của BC
=> \(AH\perp BC,HB=HC\)
=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)
=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)
\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )
=> IB là tia phân giác của góc ABC
c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)
mà \(OC=OD=>OC^2=OD^2\)
=>\(OD^2=OH.OA\)
mình làm lại nha
câu c, d nè :
c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có
\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)
gọi J là là tâm đường tròn ngoại tiếp tam giác AHD
khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)
zậy
\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)
=> OD là ....
d) CHỉ ra M, N thuộc trung trực AH
theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)
Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC
zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD
=> J trùng E
zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH
mặt khác M , N đều thuộc trung trực của AH nên M ,E ,N thẳng hàng
(Kĩ năng hình học của mình đã lên vài "cấp" sau khi ra câu c)
Câu c đề đúng phải là \(AO=3AM\), chứng minh như sau:
Nhận thấy \(OA\) là trung trực \(BC\) vậy \(M\) là giao của trung trực \(NC\) va trung trực \(BC\).
Tức là \(M\) là tâm đường tròn ngoại tiếp tam giác \(BNC\) và còn thêm \(M\) nằm trên trung trực \(BN\).
Gọi \(T\) là trung điểm \(BN\) thì \(BO=2BT\).
Theo định lí Thales cho tam giác \(OBA\) có \(MT\) song song với \(AB\):
\(AO=3AM\)(đpcm - ngắn gọn nhưng không dễ nhìn)