Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{\left(a+b\right)^2-a^2-b^2}{2}+2\left(a+b\right)\)
\(S=\frac{\left(a+b\right)^2+4\left(a+b\right)-1}{2}\)
\(S=\frac{\left\{\left(a+b\right)-2\right\}^2+5}{2}\)
S>=\(\frac{5}{2}\) xay ra dau = khi va chi khi a+b=2 dua vao day tim a,b
BÀI 1 : cho x+y=2 ................
GIẢI :
TA CÓ :x2+y2\(\ge\)\(\frac{\left(x+2\right)^2}{2}\)=2
MIN =2 khi x=y=1
BÀI 2: cho a,b>0 và ...........
GIẢI:
12=3a+5b \(\ge\)2\(\sqrt{3a.5b}\)
\(=2\sqrt{15ab}=>ab\le\frac{36}{15}=\frac{12}{15}\)
dấu "=" xảy ra khi 3a=5b,3a+5b=12
<=>a=2,b=6/5
tk mk nha !\(\phi\Phi\alpha\omega\Phi\varepsilon\partial\beta\)
Áp dụng BĐT Bunhiacopsi ta có:
\(\left(a^3+b\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2\)
\(\Rightarrow a^3+b\ge\frac{\left(a+b\right)^2}{\frac{1}{a}+b}\Rightarrow\frac{1}{a^3+b}\le\frac{\frac{1}{a}+b}{\left(a+b\right)^2}\)
Tương tự \(\frac{1}{a+b^3}\le\frac{\frac{1}{b}+a}{\left(a+b\right)^2}\)
Khi đó \(\frac{1}{a^3+b}+\frac{1}{b^3+a}\le\frac{\frac{1}{a}+\frac{1}{b}+a+b}{\left(a+b\right)^2}\)
\(\Rightarrow S=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{a+b}-\frac{1}{ab}=\frac{a+b+ab\left(a+b\right)-a-b}{ab\left(a+b\right)}=1\)
Dấu "=" xảy ra tại a=b=1
Vậy..................
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
ta có:
\(ab< =\frac{a^2+b^2}{2}=\frac{1}{2}\)
\(\frac{\left(a+b\right)^2}{2}< =a^2+b^2=1\)
=>\(2\left(a+b\right)< =2\sqrt{2}\)
=>\(ab+2\left(a+b\right)< =\frac{1}{2}+2\sqrt{2}=\frac{1+4\sqrt{2}}{2}\)
=>Max ab+2(a+b)=\(\frac{1+4\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2+b^2=1\\a=b\end{cases}< =>a=b=\frac{1}{\sqrt{2}}}\)
Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2)
Theo Cauchy có:
\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)
=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)
Hoặc:
P2= (a2+b2+c2)(b2+c2+a2)
Theo Bunhiacopxki có:
P2= (a2+b2+c2)(b2+c2+a2) \(\ge\)(ab+bc+ca)2=92
=> P\(\ge\)9 => Pmin=9
Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)
\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)
\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)
Cộng từng vế của (1), (2) và (3) ta được:
ab + bc + ca -2(a +b +c) + 3 \(\ge0\)
=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)
Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)
=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)
Vậy GTLN của P là 18
Dâu "=" xảy ra khivà chỉ khi:
a =b=1, c=4
hoặc: b=c=1, a=4
hoặc: c=a=1, b=4
?
Ảo loz ak