K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

12 tháng 12 2016

xfffff

4 tháng 3 2019

+) Giả sử 0<a≤c0<a≤c ta có: a2≤c2a2≤c2

a2+b2>5c2a2+b2>5c2

⇒a2+b2>5a2⇒a2+b2>5a2

⇒b2>4a2⇒b2>4a2

⇒b>2a⇒b>2a (1)

c2>a2⇒b2+c2>a2+b2>5c2c2>a2⇒b2+c2>a2+b2>5c2

⇒b2>4c2⇒b2>4c2

⇒b>2c⇒b>2c (2)

Cộng (1), (2) ⇒2b>2a+2c⇒2b>2a+2c

⇒b>a+c⇒b>a+c ( vô lí )

⇒c<a⇒c<a

+) Chứng minh tương tự suy ra c < b

{c<ac<b⇒{Cˆ<AˆCˆ<Bˆ⇒2Cˆ<Aˆ+Bˆ{c<ac<b⇒{C^<A^C^<B^⇒2C^<A^+B^

⇒3Cˆ<Aˆ+Bˆ+Cˆ⇒3C^<A^+B^+C^

⇒3Cˆ<180o⇒3C^<180o

⇒Cˆ<60o(đpcm)⇒C^<60o(đpcm)

Vậy...

4 tháng 3 2019

Xin lỗi các bạn dấu mũ bị lộn nhé!

21 tháng 4 2017

Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).

18 tháng 3 2019

Ta sẽ chứng minh c là cạnh nhỏ nhất.

Thật vậy,giả sử c không phải là cạnh nhỏ nhất.

Giả sử \(c\ge a\Rightarrow c+c\ge a+c>b\Rightarrow2c>b\Leftrightarrow4c^2>b^2\)

Do \(c\ge a\) nên \(4c^2+c^2=5c^2\ge a^2+b^2\) (trái với gt)

Với \(c\ge b\) chứng minh tương tự của dẫn đến vô lí.

Do đó c là cạnh nhỏ nhất.Khi đó:

\(a+b+c>3c\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o>3.\widehat{C}\Leftrightarrow\widehat{C}< 60^o\) (đpcm)

Không chắc nha!Sai đừng trách.

18 tháng 3 2019

Giả sử \(c\ge a>0\)\(\Rightarrow c^2\ge a^2\)mà \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\Rightarrow b^2>4a^2\Rightarrow b>2a\) (1)

Vì \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\Rightarrow b^2>4c^2\Rightarrow b>2c\)(2)

Từ (1) và (2) => 2b>2a+2c => b> a + c (vô lý) => c<a

Tương tự ta được c<b => c là độ dài cạnh nhỏ nhất

=> \(\widehat{C}\)là góc nhỏ nhất \(\Rightarrow\widehat{C}< \widehat{A}\)và \(\widehat{C}< \widehat{B}\)

=> \(3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}< 60^o\)

Vậy \(\widehat{C}< 60^o\)(đpcm)