K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

mn giúp em với em đang gấp

 

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

31 tháng 8 2019

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

14 tháng 4 2021

undefined

21 tháng 2 2023

10 tháng 9 2016

Đề là 

Cho \(a;b;c\ge0\) thỏa mãn a+b+c = 1

Cmr : \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\ge\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}\) ak bạn 

18 tháng 9 2016

Ta có:a+b+c=1

\(đpcm\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{2}{a+2b+c}+\frac{2}{2a+b+c}+\frac{2}{a+b+2c}\)(*)

Áp dụng BĐT Bunhiacopxki:

\(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)(1)

Tương tự:\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{a+b+2c}\)(2)

\(\frac{1}{a+b}+\frac{1}{c+a}\ge\frac{4}{2a+b+c}\)(3)

Cộng theo từng vế của (1);(2);(3) ta đc:(*)(đpcm)

Dấu ''='' xảy ra\(\Leftrightarrow a=b=c=\frac{1}{3}\)

 

NV
14 tháng 3 2022

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+3\ge\dfrac{2\left(a+b+c\right)}{abc}=2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xyz=1\)

BĐT trở thành: \(x^2+y^2+z^2+3\ge2\left(xy+yz+zx\right)\)

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là x và y \(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy+1\ge x+y\Rightarrow xyz+z\ge xz+yz\Rightarrow2xyz+2z\ge2xz+2yz\)

\(\Rightarrow2\ge2xz+2yz-2z\) (do \(xyz=1\))

\(\Rightarrow VP=x^2+y^2+z^2+2+1\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(VP\ge2xy+z^2+2xz+2yz-2z+1=2\left(xy+yz+zx\right)+\left(z-1\right)^2\ge2\left(xy+yz+zx\right)\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
18 tháng 2 2022

Đặt \(a\left(1-b\right)=x;b\left(1-c\right)=y;c\left(1-a\right)=x\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca=1-a\left(1-b\right)-b\left(1-c\right)-c\left(1-a\right)=1-x-y-z\)

BĐT cần c/m trở thành:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{3}{1-x-y-z}\)

\(\Leftrightarrow\left(1-x-y-z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-3\ge0\)

\(\Leftrightarrow\dfrac{1-x-y-z}{x}+\dfrac{1-x-y-z}{y}+\dfrac{1-x-y-z}{z}-3\ge0\)

\(\Leftrightarrow\dfrac{1-y-z}{x}+\dfrac{1-z-x}{y}+\dfrac{1-x-y}{z}-6\ge0\) (1)

Lại có: \(1-y-z=1-b\left(1-c\right)-c\left(1-a\right)=1-b-c+bc+ca=\left(1-b\right)\left(1-c\right)+ca\)

Nên (1) tương đương:

\(\dfrac{\left(1-b\right)\left(1-c\right)+ca}{a\left(1-b\right)}+\dfrac{\left(1-a\right)\left(1-c\right)+ab}{b\left(1-c\right)}+\dfrac{\left(1-a\right)\left(1-b\right)+bc}{c\left(1-a\right)}-6\ge0\)

\(\Leftrightarrow\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\)

BĐT trên hiển nhiên đúng theo AM-GM do:

\(\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\sqrt[6]{\dfrac{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}}=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

19 tháng 2 2022

Cám ơn bài giải của thầy Lâm ạ!
 Và từ bài bất đăng thức này, đã được chế thành bài toán hình học  trong 1 kì thi học sinh giỏi toán cấp tỉnh thầy ạ!undefined