Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
a) Hàm số \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\) xác định khi và chỉ khi \(x^8-8>0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy tập xác định của hàm số là \(\left(2;+\infty\right)\)
Đạo hàm của hàm số là :
\(y'=\frac{\pi}{3}\left(x^3-8\right)'.\left(x^3-8\right)^{\frac{\pi}{3}-1}=\frac{\pi}{3}.3x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}=x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}\)
b) Hàm số xác định khi và chỉ khi \(x^2+x-6>0\Leftrightarrow x<-3\) hoặc \(x\ge2\)
Vậy tập xác định của hàm số là : \(\left(-\infty;-3\right)\cup\left(2;+\infty\right)\)
Đạo hàm của hàm số là :
\(y'=\frac{-1}{3}\left(x^2+x-6\right)'.\left(x^2+x-6\right)^{\frac{-1}{3}-1}=\frac{-\left(2x+1\right)\left(x^2+x-6\right)^{\frac{-4}{3}}}{3}\)
a) Ta có tập xác định của cả hai hàm số \(f\left(x\right),g\left(x\right)\) đểu là \(\mathbb{R}\)
Mặt khác:
\(f\left(-x\right)=\dfrac{a^{-x}+a^{-x}}{2}=f\left(x\right);g\left(x\right)=\dfrac{a^{-x}-a^x}{2}=-g\left(x\right)\)
Vậy \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) làm hàm số lẻ
b) Ta có :
\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2}\ge\sqrt{a^xa^{-x}}=1,\forall x\in\mathbb{R}\)
và :
\(f\left(0\right)=\dfrac{a^0+a^0}{2}=1\)
Vậy :
\(minf\left(x\right)=f\left(0\right)=1\)
a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)
Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)
Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)
Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)
\(\Leftrightarrow-3< x< x\)
Vậy tập xác định là \(D=\left(-3;2\right)\)
a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)
b. \(y=\log_3\left(x^2-3x\right)\)
Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)
\(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)
c. \(y=\log_{x^2-4x+4}2013\)
Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)
Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)
Chọn B
Hàm số y = a x có TXĐ là: ℝ , tập giá trị là ( 0 ; + ∞ ) .
Hàm số y = log a x có TXĐ là ( 0 ; + ∞ ) , tập giá trị là ℝ .