Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số bất kỳ trong chúng sẽ là số âm trái với giả thiết.
Tách riêng số dương đó còn 30 số chi làm 6 nhóm. Theo đề bài tổng các số của mỗi nhóm đều là số dương nên tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương.
Trong 3 số đã cho có ít nhất 1 số dương ( vì nếu 31 số đã cho đều âm thì tổng của 5 số bất kỳ không thể là 1 số dương )
Tách riêng số dương đó ra thì còn 30 số , nhóm 5 số vào 1 nhóm thì được 6 nhóm . Trong đó nhóm nào cũng là 1 số dương
\(\Rightarrow\)Tổng của 30 số là 1 số dương cộng thêm số duong đã tách
Trong các số đã cho,có ít nhất 1 số là số nguyên dương( nếu 31 số đã cho đều là nguyên âm thì tổng của 5 số bất kỳ không thể là 1 số nguyên dương,như vậy trái với đề bài đã nêu).
Tách 1 số nguyên dương đó ra ,còn lại 30 số. Chia 30 số này thành 6 nhóm (mỗi nhóm có tổng 5 số bất kỳ).
Theo đề bài ,tổng của 5 số đó trong 1 nhóm là 1 số nguyên dương.
=>tổng của 6 nhóm là 1 số nguyên dương và cộng 1 số nguyên dương đã tách.
=> Tổng của 31 số nguyên đó là 1 số nguyên dương.(đpcm)
Trong 31 số đã cho có ít nhất 1 số là số dương (vì nếu 31 số đã cho đều âm thì tổng của 5 số bất kỳ không thể là 1 số dương)
Tách riêng số dương đó ra còn 30 số, nhóm 5 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương.
=> Tổng của 30 số là 1 số dương cộng thêm 1 số dương đã tách.
Vậy tổng của 31 số đó là 1 số dương
cho 31 số nguyên trong đó tổng 5 số bất kì là một số nguyên dương . Chứng minh rằng tổng của 31 số đó là 1 số dương
Giải
Trong các số đã cho,có ít nhất 1 số là số nguyên dương( nếu 31 số đã cho đều là nguyên âm thì tổng của 5 số bất kỳ không thể là 1 số nguyên dương,như vậy trái với đề bài đã nêu).
Tách 1 số nguyên dương đó ra ,còn lại 30 số. Chia 30 số này thành 6 nhóm (mỗi nhóm có tổng 5 số bất kỳ).
Theo đề bài ,tổng của 5 số đó trong 1 nhóm là 1 số nguyên dương.
=>tổng của 6 nhóm là 1 số nguyên dương và cộng 1 số nguyên dương đã tách.
=> Tổng của 31 số nguyên đó là 1 số nguyên dương.(đpcm)
Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số bất kì trong chúng sẽ là số âm trái với giả thiết .
Tách riêng số dương đó còn 30 số chia làm 6 nhóm .Theo đề tài tổng các số của mỗi nhóm đều là số dương nên tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương .
Ta có , trong 31 số nguyên thì phải có 1 số nguyên dương(vì nếu cả 31 số đều là số nguyên âm thì tổng sẽ ko phải là 1 số nguyên dương). Ta sẽ tách số dương ấy ra 1 nhóm riêng.
Như vậy sẽ còn 30 số nguyên còn lai ta tách làm 6 nhóm, mỗi nhóm 5 số nguyên, cộng thêm số nguyên dương ban đầu ở nhóm trên, ta được 7 nhóm tất cả. Theo đè bài, cứ 5 số nguyên bất kì có tổng là 1 số nguyên dương (+) số nguyên dương ban đầu =1 số nguyên dương(đpcm)
Ta sẽ dùng phương pháp phản đề :
Lấy 5 số bất kì :1,2,3,4,5 là 5 số nguyên dương (5 số nhỏ nhất khác nhau)
Lấy 26 số nguyên âm lớn nhất : -1
Tổng 31 số đó là : 1 + 2 + 3 + 4 + 5 + (-1.26) = 15 + (-26) = (-11)
Mà -11 không là 2 số nguyên dương (trái đề bài)
Vậy tổng 31 số đó có thể là 1 số nguyên dương hoặc không là 1 số nguyên dương