Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo:
cho 3 số x,y,z đôi một khác nhau và x+y+z=0 Tính\(P=\dfrac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2... - Hoc24
Lời giải:
Xét mẫu thức:
$2xy^2+2yz^2+2zx^2+3xyz=(xy^2+yz^2+zx^2)+(xy^2+xyz)+(yz^2+xyz)+(xz^2+xyz)$
$=xy^2+yz^2+zx^2+xy(y+z)+yz(z+x)+xz(x+y)$
$=xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)$
$=(x-y)(y-z)(z-x)$
$\Rightarrow (2xy^2+2yz^2+2zx^2)^2=(x-y)^2(y-z)^2(z-x)^2$
Xét tử thức:
$(xy+2z^2)(yz+2x^2)(xz+2y^2)$
$=[xy+z^2-z(x+y)][yz+x^2-x(z+y)][xz+y^2-y(x+z)]$
$=(z-x)(z-y)(x-y)(x-z)(y-x)(y-z)=-(x-y)^2(y-z)^2(z-x)^2$
Do đó: $A=-1$
giúp ko biết đc j ko nhỉ ^^
ta có \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz.\)lúc đó
\(P=\frac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2+y^2\left(x+y\right)+x^2\left(x+z\right)+z^2\left(z+y\right)}\)
\(P=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}=2018\)
x^3+y^3+z^3-3xyz = 0
<=> (x+y+z).(x^2+y^2+z^2-xy-yz-zx) = 0
Mà x+y+z > 0 => x^2+y^2+z^2-xy-yz-zx = 0
<=> 2x^2+2y^2+2z^2-2xy-2yz-2zx = 0
<=> (x-y)^2+(y-z)^2+(z-x)^2 = 0
=> x-y=0;y-z=0;z-x=0
=> P = 0
k mk nha
Ta có \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^3=-z^3\)
\(\Leftrightarrow x^3+y^3+z^3+3xy\left(x+y\right)=0\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
Đặt \(A=2xy^2+2yz^2+2zx^2+3xyz=2xy^2+2yz^2+2zx^2+x^3+y^3+z^3\)
\(=x^2\left(2z+x\right)+y^2\left(2x+y\right)+z^2\left(2y+z\right)\)
Do \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}2z+x=z-y\\2x+y=x-z\\2y+z=y-x\end{matrix}\right.\)
\(\)\(\Rightarrow A=x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\)
\(=x^2\left(z-y\right)-y^2\left(z-y+y-x\right)+z^2\left(y-x\right)\)
\(=\left(x^2-y^2\right)\left(z-y\right)-\left(z^2-y^2\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(z-y\right)\left(x+y-z-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Rightarrow\dfrac{2018\left(x-y\right)\left(y-z\right)\left(x-z\right)}{A}=2018\)
\(\Rightarrow P=2018\)
Vậy \(P=2018\)
\(2018\left(x-y\right)\left(y-z\right)\left(z-x\right)\) nha , đánh vội nên ko để ý