K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Áp dụng bđt AM-GM:

\(\sum\dfrac{a^3}{a^2+b^2}=\sum\left(a-\dfrac{ab^2}{a^2+b^2}\right)\ge\sum\left(a-\dfrac{b}{2}\right)=a+b+c-\dfrac{a}{2}-\dfrac{b}{2}-\dfrac{c}{2}=\dfrac{a+b+c}{2}\)

\("="\Leftrightarrow a=b=c\)

14 tháng 7 2017

a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)

\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

14 tháng 7 2017

b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)

\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)

21 tháng 6 2017

làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)

\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)

\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)

21 tháng 6 2017

ok thỏa thuận rồi tui làm nửa sau thui nhé :D

Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:

\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)

Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)

Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:

\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)

\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)

\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)

Can you continue

28 tháng 7 2018

\(\dfrac{a^3}{b^3}+\dfrac{a^3}{b^3}+1+\dfrac{b^3}{c^3}+\dfrac{b^3}{c^3}+1+\dfrac{c^3}{a^3}+\dfrac{c^3}{a^3}+1\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow2\left(\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\right)\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)-3\)

\(\ge2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)+3-3=2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)

27 tháng 7 2018

giả sử \(a>b>c>0\) thì ta có :

\(\dfrac{a^2}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^2}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\ge2\dfrac{a}{b}+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\)

\(=\dfrac{2a}{b}+\dfrac{c^3}{a^3}-\dfrac{c^2}{a^2}\ge0\)

làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\)\(b>c>a\)

\(\Rightarrow\left(đpcm\right)\)

6 tháng 10 2017

\(A=\dfrac{a^3}{b+c+d}+\dfrac{b^3}{a+c+d}+\dfrac{c^3}{a+b+d}+\dfrac{d^3}{a+b+c}\)

\(=\dfrac{a^4}{ab+ac+ad}+\dfrac{b^4}{ab+bc+bd}+\dfrac{c^4}{ac+bc+cd}+\dfrac{d^4}{ad+bd+cd}\)

\(\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\) (bđt Cauchy Shwarz dạng Engel)

Cần chứng minh \(\dfrac{a^2+b^2+c^2+d^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\ge\dfrac{1}{3}\)

\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2\ge2\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-d\right)^2+\left(b-c\right)^2+\left(c-d\right)^2\ge0\) *đúng*

Vậy ta có đpcm.

Dấu "=" xảy ra khi a = b = c = d

10 tháng 5 2018

Đề đầy Đủ phải thêm cái \(a^2+b^2+c^2=1\) nữa

Lười Ghi đề giải típ luôn nha Đặt Biểu Thức đã cho là A

\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)

Áp dụng BĐT Cô-si cho ba số dương ta có

\(a^2\left(1-a^2\right)^2=\frac{1}{2}.a^2\left(1-a^2\right)\left(1-a^2\right)\)

\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Rightarrow\frac{a^2}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}a^2\)(1)

Tương tự ta có \(\frac{b^2}{b\left(1-b^2\right)}\ge\frac{3\sqrt{3}}{2}b^2\)(2)

\(\frac{c^2}{c\left(1-c^2\right)}\ge\frac{3\sqrt{3}}{2}c^2\)(3)

Từ (1),(2) và (3) ta có 

\(A\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)

Vậy ta có \(đpcm\)

17 tháng 2 2018

áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)

tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)

suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

suy ra dpcm

dau = xay ra khi a=b=c

AH
Akai Haruma
Giáo viên
6 tháng 4 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ac}(*)\)

Giờ ta sẽ đi CM: \(\frac{(a+b+c)^2}{ab+bc+ac}\geq \frac{9}{a+b+c}(**)\)

Đặt \(a+b+c=t(t>0)\Rightarrow (a+b+c)^2=t^2\)

\(\Leftrightarrow 3+2(ab+bc+ac)=t^2\Rightarrow ab+bc+ac=\frac{t^2-3}{2}\)

Khi đó:

\((**)\Leftrightarrow (a+b+c)^3\geq 9(ab+bc+ac)\)

\(\Leftrightarrow t^3\geq 9\left(\frac{t^2-3}{2}\right)\)

\(\Leftrightarrow 2t^3-9t^2+27\geq 0\)

\(\Leftrightarrow (2t+3)(t-3)^2\geq 0\) (luôn đúng với $t>0$)

Do đó \((**)\) đúng.

Từ \((*);(**)\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{9}{a+b+c}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=1\)

8 tháng 4 2018

Chị Akai Haruma ơi chỗ (*) áp dụngbđt (a+b+c)2 >= 3(ab+bc+ac)

đk ko ạ

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)

\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)

\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)

Cộng theo vế và rút gọn:

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

25 tháng 12 2018

AM-GM là gì z bn