Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Cauche ta có:
\(\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\left(x+y\right).\frac{1+xy}{x+y}=2\left(1+xy\right)=2+2xy\)
<=> \(x^2+y^2+2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy\)
<=> \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy-2xy=2\)=> ĐPCM
\(VT=x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2-2xy\)
\(VT\ge2\sqrt{\frac{\left(x+y\right)^2\left(1+xy\right)^2}{\left(x+y\right)^2}}-2xy=2\left|1+xy\right|-2xy\)
\(VT\ge2\left(1+xy\right)-2xy=2\) (đpcm)
Dấu "=" xảy ra khi \(\left(x+y\right)^2=1+xy\)
Cho các số x , y thỏa mãn x + y \(\ne\)0
Chứng minh : \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
thằng ngu lê anh tú ko biết gì thì im vào
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)\(\Rightarrow x^2+y^2=S^2-2P\)
Ta cần chứng minh \(S^2-2P+\left(\frac{P+1}{S}\right)^2\ge2\)
\(\Leftrightarrow S^2-2\left(P+1\right)+\left(\frac{P+1}{S}\right)^2\ge0\)
\(\Leftrightarrow S^2-\frac{2S\left(P+1\right)}{S}+\left(\frac{P+1}{S}\right)^2\ge0\)
\(\Leftrightarrow\left(S-\frac{P+1}{S}\right)^2\ge0\) *luôn đúng*
Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)
\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)
\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)
từ đó ta có đpcm
\(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(xy+1\right)+\left(\frac{1+xy}{x+y}\right)^2\ge0\)
\(\Leftrightarrow\left(x+y\right)^2-\frac{2\left(x+y\right)\left(xy+1\right)}{\left(x+y\right)}+\left(\frac{1+xy}{x+y}\right)^2\ge0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2\ge0\) (đúng)
Vậy ...