Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y O A z u v x
a) Vì Oy // Az nên ta có:
\(\widehat{xOy}=\widehat{xAz}\left(=35^o\right)\)( hai góc đồng vị )
Hai góc \(\widehat{OAz}\)và \(\widehat{xAz}\)kề bù nên ta có:
\(\widehat{OAz}+\widehat{xAz}=180^o\Rightarrow\widehat{OAz}+35^o=180^o\)
\(\Rightarrow\widehat{OAz}=180^o-35^o=145^o\)
b) Vì Ou là tia phân giác của \(\widehat{xOy}\)
\(\Rightarrow\widehat{xOu}=\widehat{yOu}=\frac{\widehat{xOy}}{2}=\frac{35^o}{2}=17,5^o\)
Mặt khác, vì Av là tia phân giác \(\widehat{xAz}\)
\(\Rightarrow\widehat{xAv}=\widehat{zAv}=\frac{\widehat{xAz}}{2}=\frac{35^o}{2}=17,5^o\)
Như vậy \(\widehat{xOu}=\widehat{xAv}=17,5^o\)
Hai góc \(\widehat{xOu}\)và \(\widehat{xAv}\)bằng nhau và chiếm vị trí đồng vị
=> Ou // Av ( đpcm )
1. x O x' y y'
Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)
\(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)
Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)
1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)
=> \(2.\widehat{x'Oy}=210^0\)
=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)
=> \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)
2. O x y x' y' m m'
Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)
\(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì Om là tia p/giác)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\)
=> Om' nằm giữa Ox' và Oy'
=> Om' là tia p/giác của góc x'Oy'
b) Tự viết
x O z y m n
Om là phân giác góc xOy
=> góc mOy = 1/2 góc xOy
On là phân giác góc yOz
=> góc yOn = 1/2 góc yoz
suy ra: góc mOy + góc yOn = 1/2 (góc xOy + góc yOz)
<=> góc mOn = 1/2.1800 = 900 (do góc xOy và góc yOz kề bù)
Om phân giác xoy => moy=1/2xoy hay xoy=2moy
tương tự => noy=1/2yoz hay yoz=2noy
Lại có:
xoy+yoz=180
=>2moy +2noy=180
=>moy+noy=90 hay mon =90
x x' y y' O m n
a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh
\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)
hay \(\widehat{x'Oy'}\)\(=40^0\)
+) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
hay \(40^0+\widehat{x'Oy}=180^0\)
\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)
\(\Leftrightarrow\widehat{x'Oy}=140^0\)
+) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)
hay \(40^0+\widehat{xOy'}=180^0\)
\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)
\(\Leftrightarrow\widehat{xOy'}=140^0\)
b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)
Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)
y m x O x' n y'
a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)
=> \(\widehat{xOy'}=180^0-40^0=140^0\)
Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)
b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).
Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)
\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)
Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau