Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Các cặp góc đối đỉnh là :
\(\widehat{xAy}\)với\(\widehat{y'Ax'}\)
\(\widehat{xAy'}\)với \(\widehat{yAx'}\)
b, Do \(\widehat{xAy'}\)đối đỉnh với\(\widehat{yAx'}\)
\(=>\)\(\widehat{xAy'}\)\(=\)\(\widehat{yAx'}\)\(=\)\(115^o\)
Lại có \(\widehat{xAy'}\)\(+\)\(\widehat{y'Ax'}\)\(=\)\(180^o\)
\(=>\)\(115^o\)\(+\)\(\widehat{y'Ax'}\)\(=180^o\)
\(=>\)\(\widehat{y'Ax'}\)\(=65^o\)
Mà \(\widehat{xAy}\)đối đỉng với \(\widehat{x'Ay'}\)
\(=>\)\(\widehat{xAy}\)\(=\widehat{x'Ay'}\)=\(65^o\)
Vậy \(\widehat{xAy'}\)\(=\widehat{yAx'}\)\(=150^o\)
\(\widehat{xAy}\)\(=\widehat{x'Ay'}\)\(=65^o\)
Chúc bạn họk tốt ~~~!!:3
Ủng hộ nhé
Bài 1)
Vì 3aOC = aOD
Mà aOC + aOD = 180°
=> 3 aOC + aOC = 180°
=> 4 aOC = 180°
=> AOC = 45°
=> AOD = 135°
Bài 2)
Gọi xOM và yON là 2 góc đối đỉnh
Gọi Ot ; Ot' là phân giác xOm và yOn
Vì Ot là phân giác xOm
=> mOt = \(\frac{1}{2}\)xOm
Vì Ot' là phân giác yOn
=> nOt' = \(\frac{1}{2}\)yOn
Vì xOm = yOn
=> mOt = nOt'
Mà OM ; ON là tia đối nhau
=> Ot nằm giữa OM ; ON
=> nOt + tOn = mOn = 180°
=> nOt' + tOn = 180°
=> tOt' = 180°
=> Ot ; Ot' là 2 tia đối nhau
.3.
Ta có ^xOy =30^o
^y'Oy =180^o
=> ^xOy'=^y'Oy -^xOy =180^o-30^o=150^o
^x'Oy' = ^xOy =30 ^o ( đối đỉnh)
^x'Oy = ^xOy' =150 ^o ( đối đỉnh)
Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)
các cặp góc đối đỉnh là \(\widehat{xOy}và\widehat{x'Oy'}\) ;\(\widehat{x'Oy}=\widehat{xOy'}\)
ta có \(\widehat{xOy}và\widehat{x'Oy'}\) là 2 góc đối đỉnh \(\Rightarrow\text{ }\text{ }\widehat{xOy}=\widehat{x'Oy'}=45độ\)
ta có \(\widehat{x'Oy}+\widehat{xOy}=180độ\)
\(\Rightarrow\widehat{x'Oy}+45độ=180độ\)
\(\Rightarrow\widehat{x'Oy}=180độ-45độ=135độ\)
ta có \(\widehat{x'Oy}=\widehat{xOy'}\) là 2 góc đối đỉnh
\(\Rightarrow\widehat{x'Oy}=\widehat{xOy'}=135độ\)
vậy \(\widehat{x'Oy}=135độ;\widehat{xOy'}=135độ;\widehat{x'Oy'}=45độ\)
a) Các cặp góc kề bù
\(\widehat{xOy}\) và \(\widehat{yOx'}\)
\(\widehat{yOx'}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy'}\) và \(\widehat{xOy'}\)
\(\widehat{xOy'}\) và \(\widehat{xOy}\)
Các cặp góc đối:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{y'Ox}\)
b) Do \(\widehat{xOy}\) kề bù với \(\widehat{xOy'}\)
\(\Rightarrow\widehat{xOy}+\widehat{xOy'}=180^o\)
\(\Rightarrow\widehat{xOy'}=180^o-70^o=110^o\)