Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1; y=0 vào A và B:
A= 3x5 -7x2y3 + 15x2y = 3.(-1)5 - 7(-1)2.03 + 15(-1)2.0= -3 - 0 + 0 = -3
B= 5x2y - 15xy2 + x5 + 8 = 5.(-1)2.0 - 15.(-1).02 + (-1)5 + 8 = 0 + 0 + (-1) + 8 = 7
b, A+B= (3x5 - 7x2y3 + 15x2y) + (5x2y - 15xy2 + x5 + 8)
A+B = (3x5 + x5) - 7x2y3 + (15x2y + 5x2y) - 15xy2 + 8
A+B= 4x5 - 7x2y3 + 20x2y - 15xy2 + 8
---
A-B= (3x5 - 7x2y3 + 15x2y) - (5x2y - 15xy2 + x5 + 8)
A-B= (3x5 - x5) - 7x2y3 + (15x2y - 5x2y) + 15xy2 - 8
A-B= 2x5 - 7x2y3 + 10x2y + 15xy2 - 8
Bài 2:
a: =x(x^2-25)
=x(x-5)(x+5)
b: =x(x-2y)+3(x-2y)
=(x-2y)(x+3)
c: =(2x-3)(4x^2+6x+9)+2x(2x-3)
=(2x-3)(4x^2+8x+9)
`@` `\text {Ans}`
`\downarrow`
`a,`
`A + B = 6xyz-3x^2-2 + 4xyz+3x^2-4`
`= (6xyz + 4xyz) + (-3x^2 + 3x^2) + (-2 - 4)`
`= 10xyz - 6`
____
`b,`
`A - B=6xyz-3x^2-2 - (4xyz+3x^2-4)`
`= 6xyz - 3x^2 - 2 - 4xyz - 3x^2 + 4`
`= (6xyz - 4xyz) + (-3x^2 - 3x^2) + (-2+4)`
`= 2xyz - 6x^2 + 2`
a: A+B
=6xyz-3x^2-2+4xyz+3x^2-4
=10xyz-6
b: A-B
=6xyz-3x^2-2-4xyz-3x^2+4
=-6x^2+2xyz+2
a) \(=\left(6x\right)^2-2.6x.1+1=\left(6x-1\right)^2\)
b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
c) \(=\left(3x-y\right)^2-25=\left(3x-y-5\right)\left(3x-y+5\right)\)
d) \(=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
a: \(x^3+x^2+x+1\)
\(=\left(x^3+x^2\right)+\left(x+1\right)\)
\(=x^2\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+1\right)\)
b: Sửa đề: \(ax+ay-3x-3y\)
\(=\left(ax+ay\right)-\left(3x+3y\right)\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
c: \(x^2+ab+ax+bx\)
\(=\left(x^2+ax\right)+\left(ab+bx\right)\)
\(=x\left(x+a\right)+b\left(a+x\right)\)
\(=\left(x+a\right)\left(x+b\right)\)
d: \(xy+1+x+y\)
\(=\left(xy+x\right)+\left(y+1\right)\)
\(=x\left(y+1\right)+\left(y+1\right)\)
\(=\left(x+1\right)\left(y+1\right)\)
a.
\(x^3+x^2+x+1\\ =x^2\left(x+1\right)+\left(x+1\right)\\ =\left(x^2+1\right)\left(x+1\right)\)
b.
\(ax+ay-3x-3y\\ =ax+ay-\left(3x+3y\right)\\ =a\left(x+y\right)-3\left(x+y\right)\\ =\left(a-3\right)\left(x+y\right)\)
c.
\(x^2+ab+ax+bx\\ =\left(x^2+ax\right)+\left(ab+bx\right)\\ =x\left(x+a\right)+b\left(a+x\right)\\ =\left(x+a\right)\left(x+b\right)\)
d.
\(xy+1+x+y\\ =\left(xy+x\right)+\left(1+y\right)\\ =x\left(y+1\right)+\left(y+1\right)\\ =\left(x+1\right)\left(y+1\right)\)
\(a,A=\left(x^2+5x+\dfrac{25}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\\ A_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\\ b,B=x^2-6x+9-9=\left(x-3\right)^2-9\ge9\\ B_{min}=-9\Leftrightarrow x=3\)