K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LH
5 tháng 6 2018
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
22 tháng 7 2020
1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
Pt xác định khi:
\(\left\{{}\begin{matrix}5x-4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{4}{5}\\x\le2\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{4}{5}\le x\le2\)
Nhưng trong TH này cậu phải làm cả hai nhé !
\(\sqrt[]{5x-4}=2-x\)
Phải lấy điều kiện \(2-x\ge0\) vì phương trình trên có dạng :
\(\sqrt[]{A}=B\) nên khi đặt điều kiện \(B\ge0\) thì chắc chắn \(\sqrt[]{A}\ge0\)
Nên không cần điều kiện \(A\ge0\) mà chỉ cần điều kiện \(B\ge0\) hay \(2-x\ge0\) là đủ.