Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử : \(z=a+bi\left(a;b\in R\right)\) ; M(x;y) là điểm biểu diễn số phức z:
ta có: \(\left|\left(a+bi\right)i-1\right|\le2\) \(\Leftrightarrow\left|ai-b-1\right|\le2\) \(\Leftrightarrow a^2+\left(b+1\right)^2\le4\) \(\Leftrightarrow a^2+b^2+2b-3\le0\)
Vậy quỹ đạo của điểm M(z) là miền trong của hình tròn tâm I(0;-1) , bán kính R=2(Kể cả những điểm nằm trên đường tròn)
\(\frac{99}{98}-\frac{99}{97}+\frac{1}{97.98}\)
\(=\frac{99.97}{97.98}-\frac{99.98}{97.98}+\frac{1}{97.98}\)
\(=\frac{99.97-99.98+1}{97.98}\)
\(=\frac{99.\left(97-98\right)+1}{97.98}\)
\(=\frac{99.\left(-1\right)+1}{97.98}\)
\(=\frac{-99+1}{97.98}\)
\(=\frac{-98}{97.98}=\frac{-1}{97}\)
Bài 5:
\(y=m\sqrt{x^2-4x+7}-(3x-4)=\frac{(m^2-9)x^2+(24-4m^2)x+(7m^2-16)}{m\sqrt{x^2-4x+7}+3x-4}\)
Để đths $y$ có TCN thì:\(\lim\limits_{x\to \pm \infty}y\) hữu hạn
Để điều này xảy ra thì $m^2-9=0\Leftrightarrow m=\pm 3$
Kiểm tra lại thấy cả 2 giá trị này đều thỏa mãn.
Bài 6: Tiệm cận của ĐTHS chứ làm gì có tiệm cận hàm số hả bạn?
a.
\(y=\frac{x^2-3x+2}{2x^2+x-1}=\frac{x^2-3x+2}{(2x-1)(x+1)}\)
$(2x-1)(x+1)=0\Leftrightarrow x=\frac{1}{2}$ hoặc $x=-1$
Do đó TCĐ của ĐTHS là $x=\frac{1}{2}$ và $x=-1$
Mặt khác: \(\lim\limits_{x\to \pm \infty}\frac{x^2-3x+2}{2x^2+x-1}=\frac{1}{2}\) nên $y=\frac{1}{2}$ là TCN của ĐTHS.
b.
$x+1=0\Leftrightarrow x=-1$ nên $x=-1$ là TCĐ của đths
$\lim\limits_{x\to \pm \infty}\frac{1-x}{1+x}=-1$ nên $y=-1$ là TCN của đths
Hướng dẫn cách hack VIP OLM Vĩnh Viễn siêu dễ chỉ 10 phút là xong: youtube.com/watch?v=zYcnHqUcGZE&t
bạn chỉ cần tách x4-1 thành (x2-1)(x2+1),rồi đặt x2=t là ok
𝙁𝙊𝙍
⊂_ヽ 𝙔𝙊𝙐
\\ Λ_Λ
\( ˇωˇ)
> ⌒ヽ
/ へ\
/ / \\𝙋𝘼𝙂𝙀
レ ノ ヽ_つ
/ /
( (ヽ
| |、\
| 丿 \ ⌒)
| | ) /
ノ ) Lノ
(_/
Mình thấy có phân biệt gì giữa hàm đa thức và phân thức đâu bạn.
Theo định nghĩa thì hàm đạt cực trị tại y'=0; đồng biến khi y' > 0 và nghịch biến khi y' < 0.
Cách làm bài hàm bậc 3 ở trên là chưa chính xác.
xin lỗi nhưng mình mới lớp 8 à, nhìn hack não quá sorry nha