K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Đáp án B

30 tháng 5 2019

Đáp án D

30 tháng 11 2015

Tia đỏ có tia ló đối xứng qua mặt phân giác --> Tia đỏ có góc lệch cực tiểu, khi đó, bạn vẽ hình ra sẽ tìm được góc tới i1

sin i1 / sin 300 = căn 2 --> i1 = 450.

Sau đó, áp dụng công thức thấu kính để tìm góc r2, bạn sẽ thấy xảy ra phản xạ toàn phần với một phần tia sáng --> Tia màu tím không ló ra được

--> Đáp án A sai.

Cho một lăng kính tam giác đều ABC, góc chiết quang là A. Chiết suất của chất làm lăng kính phụ thuộc vào bước sóng ánh sáng theo công thức \(n=1+\frac{b}{\text{λ}^2}\left(1\right)\)Trong đó \(a=1,26;b=7,555.10^{-14}m^2\) còn λ được đo bằng đơn vị mét. Chiếu một tia sáng trắng vào mặt bên AB của lăng kính sao cho thia tới nằm dưới pháp tuyến điểm tới. Tia tím có bước sóng...
Đọc tiếp

Cho một lăng kính tam giác đều ABC, góc chiết quang là A. Chiết suất của chất làm lăng kính phụ thuộc vào bước sóng ánh sáng theo công thức \(n=1+\frac{b}{\text{λ}^2}\left(1\right)\)

Trong đó \(a=1,26;b=7,555.10^{-14}m^2\) còn λ được đo bằng đơn vị mét. Chiếu một tia sáng trắng vào mặt bên AB của lăng kính sao cho thia tới nằm dưới pháp tuyến điểm tới. Tia tím có bước sóng  \(\text{λ}_t=0,4\text{μm}\) còn tia đới nằm dưới phép tuyến tại điểm tới. Tia tím có bước sóng \(\text{λ}_t=0,4\text{μm}\) , còn tia đỏ có bước sóng  \(\text{λ}_đ=0,7\text{μm}\) 

a/ Xác định gói tới của tia sáng trên  mặt AB sao cho tia tím co góc lệch là cực tiểu. Tính góc lệch đó.
b/ Bây giờ muốn tia đỏ đó có góc lệch cực thiểu thì quảy quay lăng kính quanh cạnh A một góc là bao nhiêu? theo chiều nào>
c/ Góc tới của tia sáng trên mặt ABC thỏa mãn điều kiện nào thì không có tia nào trong chùm sáng trắng đó la khỏi mặt AC.

 

1
27 tháng 1 2016

a/ Chiết suất của lăng kính đối với tia tím và đỏ tính theo (1) là:

\(n_t=1,7311\text{≈}\sqrt{3};\)\(n_đ=1,4142\text{≈}\sqrt{2}\)

Khi góc lệch của tia tím là cực tiểu thì: \(\iota'_1=\iota_2\Rightarrow r_1=r_2=\frac{A}{2}\)

và \(D_{min}=2\iota_1-A\) hay \(\iota_1=\frac{D_{tmin}+A}{2}\)

 

áp dụng công thức : \(\sin\iota_1=n\sin r_1\) ta được \(\sin D_{tmin}+A_2=n_t\sin\frac{A}{2}\)

 

Đối với tia tím \(n_t=\sqrt{3}\) và biết \(A=60^0\), ta được:

\(\sin D_{tmin}+A_2=60^0\Rightarrow D_{tmin}=60^0\)

Góc tới của tia sáng trắng ở mặt AB phải bằng:\(i_t=60^0\)

b/ Tương tự như vậy, muốn cho góc lệch của tia đỏ là cực tiểu thì:

\(\sin\frac{D_{dmin}+A}{2}=n_d\sin\frac{A}{2}\Rightarrow D_{dmin}=30^0\)

và góc tới của tia sáng trắng trên mặt AB là: \(i_đ=45^0\)

Như vậy phải giảm góc tới trên mặt AB một góc là :\(i_t-t_đ=15^0\), tức là phải quay lăng kính quanh cạnh A một góc  \(15^0\) ngược chiều kim đồng hồ.

c/Gọi   \(r_{0đ}\)và \(r_{0t}\)  là các góc giới hạn phản xạ toàn phần của tia đỏ và tia tím ta có:

\(\sin r_{0đ}=\frac{1}{n_d}=\frac{1}{\sqrt{2}}\Rightarrow r_{0đ}=45^0\)

\(\sin r_{0t}=\frac{1}{n_t}=\frac{1}{\sqrt{3}}\)=>r0t < r .Do đó muốn cho không có tia sáng nào ló ra khỏi mặt AC của lăng kính thì phải có: r2 \(\ge\)r0đ  \(\Rightarrow r_2\ge15^0\)

Hay \(\sin r_1\ge\sin\left(60^0-45^0\right)=0,2588\)

Biết \(\sin r_{1t}=\frac{\sin\iota}{n_t},\sin r_{1đ}=\frac{\sin\iota}{n_d}\); vì \(n_t\le n_đ\)nên suy ra \(r_{1t}\le\sin r_{1đ}\)(2)

Từ (1) và (2) ta thấy bất đẳng thức (1) được thõa mãn đối với mọi tia sáng, nghĩa là không có tia nào trong chùm sáng trắng ló ra khỏi mặt AC, nếu

\(\sin r_{1đ}\le0,2588\)hay \(\frac{\sin\iota}{n_đ}<0,2588\)

\(\Rightarrow\sin i\le0,2588.n_đ\)\(\Rightarrow\sin\le0,36\) .Suy ra góc tới:\(i\le21^06'\)

 

15 tháng 4 2015

A sai vì máy quang phổ để phân tích thành phần của chùm sáng.

B sai vì ống chuẩn trực tạo chùm sáng song song đến lăng kính

C sai vì lăng kính phân tích chùm sáng thành các thành phần đơn sắc

D là đáp án đúng.

 

30 tháng 11 2015

Bạn hình dung lăng kính là một khối lăng trụ tam giác, nên góc chiết quang A nằm trên cạnh A. Còn khi nói AB là nói một mặt bên của lăng kính.

A M N i1 i2 r1 r2 60

+ Để có góc lệch cực tiểu thì góc tới i1 = góc ló i2, tam giác AMN đều

--> r1 = 300

 

+ Tia màu đỏ

sini1 = n sin r1 --> i1 = 450

+ Tương tự, với tia màu tím: i1' = 600

Như vậy, góc quay: 60 - 45 = 150

2 tháng 2 2016

Ta có:

 \(hf_1=A+U_1e\)

 \(hf_2=A+U_2e\)

Trừ 2 vế cho nhau ta được

\(h\left(f_2-f_1\right)=\left(U_2-U_1\right)e\)

\(U_2=U_1+\frac{h}{e}\left(f_2-f_1\right)\)

 

---->Đáp án B

4 tháng 6 2016

Ta có \(\dfrac{i_1}{i_2}=\dfrac{4}{5}\)

Nên chọn \(\begin{cases}i_1=4i \\ i_2=5i \end{cases}\) \(\Rightarrow i_{\equiv }=20i\)

Tại vị trí \(x_1= 0,5i_1=2i; x_2=12,5i_1=50i\) 

Nên số vân trùng thỏa mãn: \(2i < k.20i < 50i\)

Có 2 giá trị k thỏa mãn là: k = 1 hoặc k = 2.

Vậy có 2 vân trùng,

Chọn đáp án B.

8 tháng 3 2016

Động năng ban đầu cực đại của quang electron bứt ra từ mặt quả cầu:
      \(\frac{mv^2_{max}}{2}=\frac{hc}{\lambda}-A=2,7.10^{-19}J\)      
Gọi Q là điện tích của quả cầu, điện tích này phải là điện tích dương để giữ electron; điện tích Q phân bố đều trên mặt quả cầu, do đó điện thế trên mặt quả cầu là:
\(V=9.10^9.\frac{Q}{R}\). Trên quả cầu hình thành điện trường với các đường sức vuông góc với mặt cầu và hướng ra ngoài ( vì Q>0), điện trường này ngăn cản electron thoát ra khỏi quả cầu, công của điện trường cản là: \(W=eV=9.10^9.\frac{Qe}{R}\)
Muốn cho electron không thoát ra , công đó phải bằng động năng ban đầu cực đại của electron nghĩa là: \(9.10^9.\frac{Qe}{R}=\frac{mv^2_{max}}{2}\)
Thay số ta rút ra : \(Q=1,9.10^{-11}C\)