Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(21-\left(2x-4\right)\left(x+1\right)\)
\(=21-2x^2-2x+4x+4\)
\(=-2x^2+2x+25\)
a)
ĐKXĐ: \(x\ne-4\)
Để A nguyên thì \(3x+21⋮x+4\)
\(\Leftrightarrow3x+12+9⋮x+4\)
mà \(3x+12⋮x+4\)
nên \(9⋮x+4\)
\(\Leftrightarrow x+4\inƯ\left(9\right)\)
\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)
\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)
\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)
mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)
nên \(7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)
Vậy: \(x\in\left\{1;0;4;-3\right\}\)
a. \(2x\left(x-5\right)+21=x\left(2x+1\right)-12\)
\(2x^2-10x+21=2x^2+x-12\)
\(\left(2x^2-2x^2\right)-\left(10x+x\right)=-12-21\)
\(-11x=-33\Rightarrow x=3\)
b. \(\left(x^2-4\right)\left(x-2\right)\left(3-2x\right)=0\)
\(\left(x-2\right)^2\left(x+2\right)\left(3-2x\right)=0\)
\(\left[{}\begin{matrix}\left(x-2\right)^2=0\\x+2=0\\3-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\frac{3}{2}\end{matrix}\right.\)
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
a \(\dfrac{1}{x-y}+\dfrac{2}{x+y}+\dfrac{3x}{y^2-x^2}\)
\(=\dfrac{x+y+2x-2y-3x}{\left(x-y\right)\left(x+y\right)}=\dfrac{-y}{\left(x-y\right)\left(x+y\right)}\)
b: \(\dfrac{1}{x-2}+\dfrac{1}{x+2}-\dfrac{4x-4}{x^2-4}\)
\(=\dfrac{x+2+x-2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{-2x+4}{\left(x-2\right)\left(x+2\right)}\)
=-2/x+2
c: \(\dfrac{x+1}{x+3}-\dfrac{x-1}{3-x}+\dfrac{2x-2x^2}{x^2-9}\)
\(=\dfrac{\left(x+1\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)+2x-2x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{2x-6}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x+3}\)
Chọn B