Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\frac{x}{-2}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=-2k\\y=-3k\end{cases}}\)
Khi đó 4x - 3y = 9
<=> -8k + 9k = 9
=> k = 9
=> x = -18 ; y = -27
b) Ta có : \(2x=3y\Rightarrow\frac{2x}{6}=\frac{3y}{6}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
=> x = 4 ; y = 6
c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó (3k)2 + (4k)2 = 100
<=> 9k2 + 16k2 = 100
=> 25k2 = 100
=> k2 = 4
=> k = \(\pm\)2
Khi k = 2 => x = 6 ; y = 8
Khi k = -2 => x = -6 ; y = -8
Vậy các cặp (x;y) thỏa mãn cần tìm là (6;8);(-6;-8)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó x3 + y3 = 91
<=> (3k)3 + (4k)3 = 91
=> 27k3 + 64k3 = 91
=> 91k3 = 91
=> k3 = 1
=> k = 1
=> x = 3 ; y = 4
e) Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
Khi đó x2y = 100
<=> (5k)2.4k = 100
=> 25k2.4k = 100
=> 100k3 = 100
=> k = 1
=> x = 5 ; y = 4
\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)
ta có :
\(\frac{x}{3}=\frac{y}{5}\)
\(\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)
\(\frac{x}{12}=3\Rightarrow x=36\)
\(\frac{y}{20}=2\Rightarrow y=40\)
\(\frac{z}{15}=2\Rightarrow z=30\)
a) ta có: \(-3x=5y\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
ADTCDTSBN
có: \(\frac{y}{-3}=\frac{x}{5}=\frac{y-x}{-3-5}=\frac{20}{-8}=\frac{5}{2}\)
=> y/-3 = 5/2 => y = -15/2
x/5 = 5/2 => x = 25/2
KL:...
b) ta có: \(\frac{2x}{3}=\frac{3y}{4}\Rightarrow8x=9y\Rightarrow\frac{x}{9}=\frac{y}{8}\)
\(\frac{3y}{4}=\frac{4z}{5}\Rightarrow15y=8z\Rightarrow\frac{y}{8}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{8}=\frac{z}{15}\)
ADTCDTSBN
có: \(\frac{x}{9}=\frac{y}{8}=\frac{z}{15}=\frac{x+y+z}{9+8+15}=\frac{49}{32}\)
=> x/9 = 49/32 => x = ...
...
theo tính chất của dãy tỉ số bằng nhau
2x + 1/ 5 = 3y - 2 /7 = (2x+1)+(3y-2)/5+7=2x+3y-1/12=2x+3y-1/6x
Vậy 12=6x
x=2
y=3
x+y=5
áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}\)
\(=\frac{2x+1+3y-2}{12}=\frac{2x+3y-1}{12}\)
\(\text{Suy ra: }\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\Rightarrow6x=12\Rightarrow x=2\)
=>\(\frac{2.2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy x=2;y=3
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\left(2\right)\)
Từ (1) và (2) => 6x = 12 => x = 2
Thay x = 2 => \(\frac{2x+1}{5}=\frac{2.2+1}{5}=4+15=1\)
\(\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy x = 2 ; y = 3
Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)
\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)