Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
MA chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: góc ADE=góc ABC
góc AED=góc ACB
góc ABC=góc ACB
=>góc ADE=góc AED
=>ΔAED cân tại A
c: Xet ΔAKC co ME//KC
nên ME/KC=AE/AC=AM/AK
=>AD/AB=AM/AK
=>DM//BK
a: Xét ΔAHB và ΔAHC co
AH chung
góc BAH=góc CAH
AB=AC
=>ΔABH=ΔACH
b: Xét ΔKAI và ΔKBE có
góc KAI=góc KBE
KA=KB
góc AKI=góc BKE
=>ΔKAI=ΔKBE
=>AI=BE
Câu c/
1/ Trong ΔABC, có I là giao điểm 3 đường trung tuyến.
=> IC = 2/3 CK (1).
2/ Δ EKB = ΔIKA (g-c-g).
=> IK = EK (2)
Từ (1) và (2) => IC = IE.
=> IC + IB = IE + IB > EB (ΔIEB, Tổng 2 cạnh sẽ lớn hơn cạnh còn lại).
Mà EB = AI (câu b đã cm).
=> IC + IB > AI (đpcm)
hình bạn tự vẽ nha
a) trong △ABC có :
AH⊥BC=> AH là đường cao của △ABC
mà △ABC cân tại A
=>AH vừa là đường cao , vừa là đường trung tuyến của △ABC
b)có △ABC cân tại A=> góc ABC=góc ACB
hay góc DBH=góc ACB
mà: HD//AC
=>góc BHD=góc ACB(ĐV)
=> góc DBH=gócBHD
=>△BHD cân tại D
=> BD=DH(1)
có AH⊥BC => △ABH vuông tại H
=> góc BAH+góc ABH=900
mà góc BHD+ góc HAD =900; góc ABH= góc DHB
=>góc DAH= góc DHA
=>△AHD cân tại D
=> DA=DH(2)
từ (1),(2)=> AD=DB(=DH)
=> D là trung điểm của AB
c)trong △ABC có:
AH là đường trung tuyến thứ nhất của △ABC
D là trung điểm của AB=> CD là đường trung tuyến thứ hai của △ABC
E là trung điểm của AC=>BE là đường trung tuyến thứ ba của △ABC
lại có AH và CD cắt nhau tại G
=> G là trọng tâm của △ABC
=> BE đi qua G
=> 3 điểm B,G,E thẳng hàng
a: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có
AB=AC
AK chung
=>ΔAKB=ΔAKC
b: Xet ΔCAD có
CK vừa là đường cao, vừa là trung tuyến
=>ΔCAD cân tại C
=>CA=CD
c: Xét ΔABC có
K là trung điểm của CB
KM//AC
=>M là trung điểm của AB
a: Xét ΔAMB và ΔAMC có
AM chung
góc MAB=góc MAC
AB=AC
=>ΔAMB=ΔAMC
b: Xét ΔMAB và ΔMNC có
góc AMB=góc NMC
MB=MC
góc ABM=góc NCM
=>ΔMAB=ΔMNC
=>AB=NC
c: ΔMAB=ΔMNC
=>MA=MN
=>AM=1/2AN
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xet ΔHBK vuông tại H và ΔHCA vuông tại H có
HB=HC
góc HBK=góc HCA
=>ΔHBK=ΔHCA
=>BK=CA=AB
c: Xét tứ giác ABKC có
BK//AC
BK=AC
=>ABKC là hình bình hành
=>AB//CK