K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(a)d\perp m,ab\perp m\Leftrightarrow d//ab\)( từ vuông góc đến song song)

\(b)\widehat{ABA}=60^0\)( câu này bạn tự tính )

\(c)\widehat{HBA}=\frac{\widehat{ABa}}{2}=\frac{120^0}{2}=60^0\)và \(\widehat{HAB}=60^0\)

\(\Rightarrow\widehat{AHB}=60^0\)

\(d)\)Vì Ba là tia đối của BN nên \(\widehat{ABA},\widehat{CBN}\)là 2 góc đối nhau nên 2 tia phân giác của nó đối nhau hay BH và Bt đối nhau

ài 1 a)như hình vẽ ta thấy góc A= góc B=90° => a//b( vì có 2 góc so le trong bằng nhau) b) vì a//b nên D1=E2=60°( hai góc đồng vị) Mà E1+E2=180°=> E1=180-60=130°

a) Vì zz' cắt tt' tại A 

=> tAz = z'At' = 60° ( đối đỉnh) 

Mà tAz + tAz' = 180° ( kề bù) 

=> tAz' = 180° - 60° = 120° 

=> tAz' = zAt' = 120° ( đối đỉnh) 

b) Vì Am là phân giác tAz 

=> tAM = zAM = \(\frac{60°}{2}=30°\)

Vì An là phân giác z'At' 

=> z'AN = t'AN = \(\frac{60°}{2}=30°\)

Mà MAN = MAt + tAz' + z'AN 

=> MAN = 30° + 30° + 120°

=> MAN = 180° 

=> MAN là góc bẹt 

=> AM là tia đối của AN

24 tháng 5 2019

x x' y y' O m n

a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh

\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)

hay  \(\widehat{x'Oy'}\)\(=40^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

hay \(40^0+\widehat{x'Oy}=180^0\)

\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)

\(\Leftrightarrow\widehat{x'Oy}=140^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)

hay \(40^0+\widehat{xOy'}=180^0\)

\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)

\(\Leftrightarrow\widehat{xOy'}=140^0\)

b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)

Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)

27 tháng 7 2019

y m x O x' n y'

a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)

=> \(\widehat{xOy'}=180^0-40^0=140^0\)

Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)

b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).

Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)

\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)

Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau

Bài 1: 

a: XétΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{KDB}=\widehat{KEC}\)

Xét ΔKDB và ΔKEC có 

\(\widehat{KDB}=\widehat{KEC}\)

BD=CE

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

19 tháng 9 2023

a) Ta có: \(\widehat {PAM} = \widehat {QAN}\) ( 2 góc đối đỉnh) , mà \(\widehat {PAM} = 33^\circ \)nên \(\widehat {QAN} = 33^\circ \)

Vì \(\widehat {PAN} + \widehat {PAM} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {PAN} + 33^\circ  = 180^\circ  \Rightarrow \widehat {PAN} = 180^\circ  - 33^\circ  = 147^\circ \)

Vì \(\widehat {PAN} = \widehat {QAM}\)( 2 góc đối đỉnh) , mà \(\widehat {PAN} = 147^\circ \) nên \(\widehat {QAM} = 147^\circ \)

b)

Vì At là tia phân giác của \(\widehat {PAN}\) nên \(\widehat {PAt} = \widehat {tAN} = \frac{1}{2}.\widehat {PAN} = \frac{1}{2}.147^\circ  = 73,5^\circ \)

Vì \(\widehat {tAQ} + \widehat {PAt} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {tAQ} + 73,5^\circ  = 180^\circ  \Rightarrow \widehat {tAQ} = 180^\circ  - 73,5^\circ  = 106,5^\circ \)

Vẽ At’ là tia đối của tia At, ta được \(\widehat {QAt'} = \widehat {PAt}\)( 2 góc đối đỉnh)

Ta có: \(\widehat {QAt'} = \widehat {MAt'} = \frac{1}{2}.\widehat {MAQ}\) nên At’ là tia phân giác của \(\widehat {MAQ}\)

Chú ý:

2 tia phân giác của 2 góc đối đỉnh là 2 tia đối nhau

8 tháng 8 2019

Mk đg cần gấp giúp mk với nha mn :)))

10 tháng 2 2019

cs chơi lazi ko

10 tháng 2 2019

nhin cái ảnh quen quen

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC có...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0