K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

Hình bình hành lớp 8? | Yahoo Hỏi & Đáp

10 tháng 9 2017

Tính góc EAF 

EAF^ = 360* - (DAF^ + BAD^ + BAE^) = 360* - (60* + a + 60*) = 240* - a (1) 

b) Chứng minh rằng tam giác CEF là tam giác đều 

ABC^ = ADC^ = 180* - a 

=> CDF^ = ADC^ + ADF^ = 180* - a + 60* = 240* - a (2) 

CBE^ = ABC^ + ABE^ = 180* - a + 60* = 240* - a (3) 

AF = DF = AD = BC (4) 

CD = AB = BE = AE (5) 

(1) (2) (3) (4) và (5) => Δ CDF = ΔEBC = Δ EAF ( c.g.c) 

=> CF = CE = EF => CEF là tam giác đều

29 tháng 6 2017

Hình bình hành

Hình bình hành

27 tháng 12 2017

Hình bình hành

27 tháng 8 2023

Đặt độ dài cạnh AD là a, độ dài cạnh AB là b

Ta có: ABCD là hình bình hành nên:

\(AB=CD=b\) (hai cạnh bên) 

Mà: DCF là tam giác đều nên: 

\(CD=CF=DF=b\) (ba cạnh tam giác đều) 

Và: \(AD=BC=a\)

\(\Rightarrow BF=BC+CF=a+b\) (1)

Và: ΔADE là tam giác đều nên:

\(AD=DE=AE=a\) 

\(\Rightarrow BE=AB+AE=a+b\) (2) 

\(\Rightarrow EF=DE+DF=a+b\) (3) 

Từ (1) và (2) và (3)

\(\Rightarrow BE=BF=EF=a+b\)

Vậy ΔBEF là tam giác đều (đpcm) 

27 tháng 8 2023

BE EF BF k p đường thẳng b oi

26 tháng 8 2016

a) Tính góc EAF 
EAF^ = 360* - (DAF^ + BAD^ + BAE^) = 360* - (60* + a + 60*) = 240* - a (1) 

b) Chứng minh rằng tam giác CEF là tam giác đều 
ABC^ = ADC^ = 180* - a 
=> CDF^ = ADC^ + ADF^ = 180* - a + 60* = 240* - a (2) 
CBE^ = ABC^ + ABE^ = 180* - a + 60* = 240* - a (3) 
AF = DF = AD = BC (4) 
CD = AB = BE = AE (5) 
(1) (2) (3) (4) và (5) => Δ CDF = ΔEBC = Δ EAF ( c.g.c) 
=> CF = CE = EF => CEF là tam giác đều

20 tháng 11 2018

a,tính góc EAF

EAF^=360* - ( DAF^+BAD^+BAE^)=360*-(60*+a+60*)=240*-a(1)

b,chứng minh rằng tam giác CÈ là tam giác đều 

ABC^=ADC^+ADF^=180*-a+60*=240*-a(2)

CBE^=ABC^+ABE^=180*-a+60*=240*-a(3)

AF=DF=AD=BC(4)

CD=AB=BE=AE(5)

(1) (2) (3) (4) và (5) => tam giác CDF=tam giác EAF (c.g.c)

=> CF=CE=EF=>CÈ là tam giác đều